アップサイクルのための高含水率紅茶粕の低温乾燥 / テスト事例 / 紅茶粕乾燥機, アップサイクル乾燥, ゼロエミッション乾燥
まとめ
紅茶粕の価値と再利用
- 紅茶の健康効果: 紅茶には、抗酸化作用、心臓の健康維持、血糖値の改善など、様々な健康効果が期待できます。
- 紅茶粕の有効活用: 紅茶粕は、肥料、燃料、バイオ炭など、様々な用途に再利用可能です。
- アップサイクルの重要性: 環境問題への関心の高まりから、紅茶粕のような廃棄物のアップサイクルが求められています。
KENKI DRYERの特長
- 低温乾燥: 紅茶粕の成分を損なわず、アップサイクルに適した乾燥が可能。
- 蒸気利用: 燃料費削減、二酸化炭素排出量の抑制に貢献。
- 連続運転: 24時間無人運転が可能で、効率的。
- メンテナンス性: 部品消耗が少なく、メンテナンスコストが低い。
- 特許技術: 独自の乾燥技術で、高含水率の有機廃棄物も乾燥可能。
その他
- 紅茶飲料市場の拡大: 健康志向の高まりにより、ペットボトル紅茶の需要が拡大しています。
- 紅茶粕の腐敗問題: 水分が多いと微生物の繁殖により腐敗するため、乾燥が重要。
- バイオ炭の活用: 乾燥した紅茶粕を炭化することで、バイオ炭として利用可能。
- 環境問題への貢献: 紅茶粕の乾燥による廃棄物削減、燃料費削減、二酸化炭素排出量の抑制など、環境問題解決に貢献。
まとめ
KENKI DRYERは、紅茶粕などの飲料粕を低温で乾燥し、アップサイクルを実現するための画期的な乾燥機です。蒸気利用による低コスト運転、連続運転の容易さ、そして独自の特許技術により、環境負荷を低減しながら、資源の有効活用に貢献します。紅茶粕の持つ様々な可能性を最大限に引き出し、サステナブルな社会の実現に貢献することが期待されます。
紅茶粕等飲料粕のアップサイクル、再資源化は、環境保護、脱炭素の点からから重要視されておりその需要は増加する一方です。
KENKI DRYER 熱源はボイラーよりの蒸気を利用しており低温での間接乾燥です。低温での乾燥ですので紅茶粕等飲料粕の成分変化が少なくアップサイクルとしての有効活用が十分にでき、ゼロエミッション乾燥が可能です。
紅茶には、フラボノイドと呼ばれる抗酸化物質のグループが含まれており、心臓の健康に役立ちます。また、有害物質を殺して腸内細菌を改善し、消化管の内壁を修復する抗菌特性も含まれています。紅茶は、インスリンの使用を改善し、血糖値を下げるのに役立つ優れた無糖飲料です。
紅茶には抗酸化物質が含まれています。それはアテローム性動脈硬化症から保護するのに役立ちます。血圧を下げます。紅茶は糖尿病のリスクを減らすのに役立つかもしれません.それは癌のリスクを下げます。骨密度を改善するのに役立ちます。パーキンソン病から保護します。 紅茶には、フラボノイドと呼ばれる抗酸化物質のグループが含まれており、心臓の健康に役立ちます。紅茶を摂取すると、LDLコレステロールを下げるのに役立つ可能性があります。また、有害物質を殺して腸内細菌を改善し、消化管の内壁を修復する抗菌特性も含まれています。
紅茶には、多くの種類があります。産地別には、ダージリン、アッサム、セイロン、キーマンなどがあります。また、ブレンドティーやフレーバーティーもあります。ダージリンは、フルーティーな香りが特徴で、「紅茶のシャンパン」とも呼ばれています。
ペットボトル紅茶の需要は、近年再び拡大しているようです。2019年の紅茶飲料の生産量は119万8600klで、4年連続の拡大、過去最高を記録したという調査結果があります。健康志向の高まりやオフィスで働く女性らからの支持が背景にあるとされています。
紅茶粕を水分が多い状態で放置すると、紅茶粕に含まれる微生物(特に細菌やカビなど)の活動によって腐敗が引き起こされます。これらの微生物は、緑茶粕に含まれる水分と栄養分を利用して繁殖し、その過程でガスや悪臭を発生させ、微生物の繁殖によって腐敗し、悪臭や病原菌が発生する原因となります。乾燥は、これらの問題を解決する有効な手段の一つです。
紅茶には、臭いの元を分解したり雑菌の繁殖を抑えたりする「カテキン」「テアフラビン」という成分が豊富に含まれていることから、消臭対策にも有効活用することができます。又、紅茶の出がらしは有機物なので、家庭菜園の肥料として再利用することが可能です。土の表面に蒔くと、植物や野菜の成長を促進させます。
現在、日本国内で木材が不足しています。乾燥後の紅茶粕等の飲料粕を木材の代わりに燃料としての利用する、あるいは、乾燥後の飲料粕を炭化することによりバイオ炭としての利活用が非常に注目を浴びています。例えば、鉄鋼、鋳物業界でのコークスの代替としての利用です。
バイオ炭とは、生物資源を材料とした、生物の活性化および環境の改善に効果のある炭化物のことです。炭化については、化石燃料を使用せず装置からは地球温暖化ガスCO2が発生しない、弊社取り扱いの熱分解装置 Biogreenで対応ができますので、是非ご相談ください。
8ケ国11件の取得済み特許技術の KENKI DRYER は、バーナー等による直火乾燥機は乾燥機より二酸化炭素が排出され環境保護、脱炭素の点でも時代に逆行し、高温での乾燥のため燃料費は高額で、部品の消耗が早くメンテンナンスに費用が掛かります。KENKI DEYER は熱源には蒸気を利用していますが、乾燥熱効率が良いため蒸気使用量が少なくて済み、現在ご使用されている蒸気を利用でき、余った蒸気、余剰蒸気を使用すれば燃料費のコストはかからず、乾燥時には乾燥機からは二酸化炭素が排出されず脱炭素乾燥が出来ます。あるいは、電気式ボイラーを設置することにより乾燥時に一切地球温暖化ガス、二酸化炭素CO2の発生はありません。
又、運転開始後のトラブルは皆無で、乾燥機の本体の羽根の回転数は5RPM以下で非常にゆっくりのため部品の消耗が少なく、メンテナンスが楽で安価で済みます。KENKI DRYER は連続式での乾燥装置で乾燥対象物を貯めて乾燥させるバッチ式ではありません。そのため、運転管理が楽で1日24時間無人運転が可能です。
紅茶粕を乾燥することにより重量を減らし、廃棄物産廃量の削減を行うことは、昨今の2024年トラック問題等により値上がりしている産廃費の削減、そして、トラック運搬台数削減によりニ酸化炭素の削減もでき、環境保護、脱炭素に貢献することができます。
どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件 合計11件の特許を取得済み独自技術を持つ画期的な乾燥装置です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。
■ 紅茶とは |
紅茶(こうちゃ)とは、摘み取った茶の葉と芽を萎凋(乾燥)させ、もみ込んで完全発酵させ、乾燥させた茶葉。もしくはそれをポットに入れ、沸騰した湯をその上に注いで抽出した飲料のこと。なお、ここでいう発酵とは微生物による発酵ではなく、茶の葉に最初から含まれている酸化酵素による酸化である。
日本語の紅茶(および中国語の紅茶)の語源はその抽出液の水色(すいしょく)に由来する。
出典:Wiki 紅茶
紅茶粕を乾燥させる理由は、主に以下の点が挙げられます。
- 保存性の向上: 乾燥させることで水分が少なくなり、カビが生えたり腐ったりするのを防ぎ、長期保存が可能になります。
- 軽量化: 水分が蒸発するため、乾燥させた紅茶粕は生ものと比べて軽く、輸送や保管の際の負担が軽減されます。
- 成分の安定化: 乾燥によって酵素反応が抑制され、紅茶粕に含まれる成分の変化を最小限に抑えることができます。
- 再利用の拡大: 乾燥させた紅茶粕は、肥料や堆肥、燃料など、様々な用途に再利用しやすくなります。
- 衛生面: 乾燥させることで、紅茶粕に含まれる雑菌の繁殖を抑え、衛生的に扱うことができます。
具体的な乾燥のメリット
- アップサイクル: 紅茶粕を乾燥させることで、廃棄物としての価値を高め、新たな製品を生み出すアップサイクルが可能になります。
- 環境負荷の低減: 廃棄物の量を減らし、資源の有効活用に貢献することができます。
- コスト削減: 廃棄処理費用を削減し、新たな収益源となる可能性も秘めています。
乾燥方法
紅茶粕の乾燥方法には、天日乾燥、熱風乾燥、凍結乾燥など様々な方法があります。それぞれの方法によって、乾燥時間、エネルギー消費量、製品の品質などが異なります。
出典:Gemini
燃料(ねんりょう)とは、化学反応・原子核反応を外部から起こすことなどによってエネルギーを発生させるもののことである。古くは火をおこすために用いられ、次第にその利用の幅を広げ、現在では火をおこさない燃料もある。
出典:Wiki 燃料
堆肥(たいひ)とは、易分解性有機物が微生物によって完全に分解された肥料あるいは土壌改良剤のこと。有機資材(有機肥料)と同義で用いられる場合もあるが、有機資材は易分解性有機物が未分解の有機物残渣も含むのに対し、堆肥は易分解性有機物が完全に分解したものを指す。
英語ではコンポスト (compost) と呼び、本項でも堆肥とコンポストを同義として扱う。なお、生ごみ堆肥化容器の生成物である堆肥(コンポスト)が転じて、生ごみ堆肥化容器をコンポストと呼ぶ場合がある。
出典:Wiki 堆肥
肥料(ひりょう、肥糧)とは、植物を生育させるための栄養分として人間が施すものである。土壌から栄養を吸って生育した植物を持ち去って利用する農業は、植物の生育に伴い土壌から減少する窒素やリンなどを補給しなければ持続困難である。そこで、減少分を補給するために用いるのが肥料であり、特に窒素・リン酸・カリウムは肥料の三要素と呼ばれる。
出典:Wiki 肥料
肥料の三要素(ひりょうのさんようそ、英: three main macronutrients)とは、植物栄養素としての窒素、リン酸、カリウムのことである。これらは、植物がその成長のために多量に要求し、かつ、植物体を大きく生育させるため、農業上特に肥料として多く与えることが望ましい。
窒素
窒素は、主に植物を大きく成長させる作用があり、特に葉や茎を大きくすることから葉肥(はごえ)とも呼ばれる。根から吸収される必須栄養素の中で、最も多量に要求される。植物が利用できる窒素の土壌中含量が、植物の生産性を決める主要な因子であるとされる。植物の原形質の乾燥重量の40 – 50%は、窒素化合物である。植物の中でも、葉や茎を食用とする葉菜類は、特に窒素を多量に必要とする。
リン酸
リン酸は主に開花結実に影響し、花肥(はなごえ)または実肥(みごえ)と呼ばれる。このため、果実を食用とする果菜類の栽培では、特に重要視される。
カリウム
カリウムは、根の発育と細胞内の浸透圧調節に必須であるため根肥(ねごえ)といわれ、根菜類では他の植物以上に必要である[15]。また、葉や生長点においても重要である。主に肥料として利用されるものは、硫酸カリウム(硫酸カリ)と塩化カリウム(塩化カリ)由来のもので、カリ岩塩として採掘されたものを精製したものが利用される。
出典:Wiki 肥料の三大要素
■ 2024年現在日本国内で木材が足りない理由 |
2024年現在も、日本は深刻な木材不足に直面しており、建設や家具などの木材需要に対して供給が追いついていない状況です。
<2021年から続くウッドショックの影響>
2021年から2022年にかけて発生したウッドショックの影響は、2024年現在も依然として続いています。ウッドショックとは、北米を中心とした木材供給量の減少と需要の急増により、世界的に木材価格が高騰した現象です。
- 住宅メーカーや木材業者は、木材調達の困難や価格高騰の影響を受け続けています。
- 新築住宅の建築費用上昇や、木材を使った家具の価格改定などが相次いでいます。
<構造的な木材不足の背景>
ウッドショック以外にも、日本の木材不足には構造的な背景が存在します。
- 国内産木材の伐採量の減少:戦後の高度経済成長期における住宅建設ラッシュで大量の木材が伐採された後、植林活動が十分に行われず、現在伐採できる木材量が減っています。
- 山間部の過疎化と林業従事者の減少:山間部の過疎化が進み、林業に従事する人が減少しています。
- 海外からの木材輸入量の増加:日本の経済成長に伴い、木材需要が急増し、国内産木材だけでは需要を満たせなくなり、海外からの木材輸入量が増加しています。
- 木材自給率の低さ:2020年の木材自給率は37%で、過去最低の水準となっています。
<政府の取り組みと課題>
木材不足の解決に向けて、政府は様々な取り組みを進めています。
- 国産材の利用促進:国産材の品質向上や流通の円滑化、国産材利用に関する補助金制度の拡充、木造建築に関する技術開発など
- 森林資源の管理・整備:植林活動の推進、山間部の森林管理の強化、森林の多面的機能の維持・向上
- 海外からの木材輸入の安定化:輸出国との連携強化、輸送手段の多様化
しかし、これらの取り組みは長期的な視点での継続が必要であり、短期的には木材不足の解消は難しい状況です。
<2024年における木材価格の動向>
2024年における木材価格の動向は、引き続き不透明な状況です。
- ウッドショックの影響や世界経済の動向によって、木材価格が上下に変動する可能性があります。
- 短期的な視点では、木材価格の高止まりが続く可能性が高いと考えられます。
- 中長期的な視点では、国産材の利用促進や森林資源の管理・整備などの取り組みが奏功し、木材価格が安定化する可能性もありますが、現時点では明確な展望はありません。
出典:Gemini
■ バイオ炭とは |
バイオ炭とは、生物資源を材料とした、生物の活性化および環境の改善に効果のある炭化物のことです。 日本バイオ炭普及会によると、バイオ炭は、難分解性の炭素を農地に固定し、土壌改良資材として使用することで、気候変動対策に貢献する吸収源活動です。 また、バイオ炭は、食品ロスや木材、廃棄物などの生物資源を「炭化」したもので、燃焼しない水準に管理された酸素濃度の下、350℃超えの温度でバイオマスを加熱して作られる固形物と定義されています。
バイオ炭は、生物資源を原料とし、酸素の少ない状態で加熱して作られる固形物です。木材や竹、農業廃棄物など、さまざまな生物資源から作ることができます。
バイオ炭には、以下の3つの特徴があります。
- 炭素貯留性
- 土壌改良性
- 水質浄化性
炭素貯留性
バイオ炭は、炭素を大量に含んでいます。バイオ炭を土壌に施用することで、土壌中に炭素を貯留することができます。
土壌改良性
バイオ炭は、土壌の透水性や保水性、団粒性を改善する効果があります。また、土壌の酸度を中和する効果もあります。
水質浄化性
バイオ炭は、水中の汚染物質を吸着する効果があります。また、水中の微生物の活性化を促す効果もあります。
バイオ炭の用途
- 土壌改良
- 温室効果ガス削減
- 水質浄化
- 飼料添加
- 肥料
- 燃料
バイオ炭の期待される効果
- 温室効果ガス削減
- 土壌保全
- 農業生産性向上
- 水質保全
- 災害リスク軽減
バイオ炭の課題
- 製造コストの高さ
- 製造時のエネルギー消費量
- 土壌への影響
まとめ
バイオ炭は、炭素貯留性、土壌改良性、水質浄化性などの特徴を有する、注目されている素材です。バイオ炭の普及が進むことで、温室効果ガス削減や環境保全に貢献することが期待されています。
出典:日本バイオ普及会 ChatGPT 及び Bard
■ 飲料粕、炭化物の利用用途 |
飲料粕(ビール粕、ワイン粕など)を炭化して得られる炭化物には、多くの利用用途があります。以下に具体的な用途を示します。
1. 土壌改良剤
- 肥沃度の向上:飲料粕炭化物は多孔質であり、土壌の水分保持能力や通気性を改善します。
- 栄養素の保持と放出:多孔質構造が肥料や栄養素を吸着し、必要に応じて徐々に放出します。
- pH調整:土壌の酸性度を調整し、植物の成長環境を改善します。
2. 吸着材
- 水質浄化:有害物質や重金属を吸着し、水の浄化に使用されます。
- 大気浄化:工業排水や農業排水中の汚染物質を吸着するために使用されます。
3. 飼料添加物
- 動物の健康促進:飲料粕炭化物を飼料に添加することで、家畜の消化器系の健康を改善し、成長を促進します。
4. バイオフィルター
- 脱臭と汚染物質の除去:養殖場や農業施設での臭気や汚染物質を除去するためのフィルターとして使用されます。
5. エネルギー源
- 固形燃料:高エネルギー密度を持ち、固形燃料として利用できます。
- 発電:バイオマス発電の燃料として利用され、再生可能エネルギー源として役立ちます。
6. 建材
- コンクリートの補強材:炭化物をコンクリートに混ぜることで、強度や耐久性を向上させることができます。
7. 炭素の固定
- 炭素吸収:炭化物として土壌に埋めることで、二酸化炭素の固定化を図り、気候変動対策に寄与します。
8. 農業用途
- 堆肥の改善:堆肥に混ぜることで、その品質を向上させ、土壌の健康を促進します。
- 害虫駆除:土壌に混ぜることで、特定の害虫を抑制する効果が期待されます。
9. 健康・美容
- 化粧品原料:飲料粕炭化物は、肌の浄化やデトックス効果を持つ成分として化粧品に利用されることがあります。
利点と考慮点
利点
- 持続可能性:廃棄物を有効活用するため、環境負荷が低く、持続可能な方法です。
- 経済的価値:廃棄物から高価値の製品を生産することで、経済的価値を創出します。
- 多機能性:多くの用途に適しており、さまざまな産業で利用可能です。
考慮点
- 製造コスト:炭化プロセスにはエネルギーが必要であり、コスト効率を考慮する必要があります。
- 品質管理:炭化物の品質は原料やプロセスに依存するため、安定した品質を保つための管理が重要です。
飲料粕炭化物は、環境保護、持続可能な農業、エネルギー効率の向上など、さまざまな分野での利用が期待されています。適切な技術と管理によって、そのポテンシャルを最大限に引き出すことができます。
出典:ChatGPT
■ コークス代替炭化物 |
コークスは、鉄鋼製造などで重要な還元剤として使用されていますが、持続可能性や環境負荷の観点から、コークスの代替として利用できる炭化物が注目されています。以下は、コークスの代替となり得る炭化物の具体例です。
1. バイオコークス(バイオ炭)
- 竹炭:竹から得られる炭は、高い密度と炭素含有量を持ち、鉄鉱石の還元に適しています。
- ココナッツ殻炭:高い炭素含有量と硬度があり、製鋼プロセスでのコークスの代替として利用可能です。
2. 農業廃棄物由来の炭化物
- 米の籾殻炭:シリカを含む米の籾殻炭は、特定の還元プロセスで利用できますが、鉄鋼製造にも適応可能な場合があります。
- トウモロコシの芯炭:高い炭素含有量があり、製鉄業での還元剤として有望です。
3. 食品廃棄物由来の炭化物
- コーヒーかす炭:コーヒーかすから得られる炭化物は、還元力が強く、金属の精錬や触媒のサポート材として利用できます。
4. 動物由来の炭化物
- 骨炭:骨から得られる炭化物は、リン酸カルシウムを含み、特定の化学工業での還元剤として使用されます。
5. 庭園廃棄物由来の炭化物
- 葉や草の炭:庭園廃棄物から得られる炭化物も還元剤として利用可能で、特に小規模な工業プロセスや農業用途に適しています。
利点と考慮点
利点
- 持続可能性:これらの代替炭化物は再生可能な資源から作られており、環境負荷が低い。
- 廃棄物の再利用:農業廃棄物や食品廃棄物を利用することで、廃棄物処理問題を軽減します。
- 炭素固定:炭化物を利用することで、二酸化炭素の排出を抑え、炭素を固定化できます。
考慮点
- 性能の安定性:コークスの代替として使用するためには、代替炭化物の性能が安定していることが重要です。
- 製造コスト:新しいプロセスを導入するためのコストと技術的な課題を考慮する必要があります。
- 供給の安定性:大量生産に対応するための安定した供給源が必要です。
具体例:バイオコークスの製造と利用
- 製造方法:バイオマス原料を炭化し、高温で処理してバイオコークスを生成します。
- 鉄鋼業での利用:高炉での鉄鉱石の還元プロセスにおいて、バイオコークスをコークスの代替として使用します。これにより、炭素排出量の削減が期待されます。
コークスの代替炭化物は、持続可能な鉄鋼製造と環境保全の両立を目指す上で重要な役割を果たす可能性があります。今後の研究と技術開発により、これらの代替炭化物の利用がさらに進むことが期待されます。
出典:ChatGPT
■ 高含水率有機廃棄物乾燥 / どこもできない付着物、粘着物の乾燥 国際特許技術 |
国際特許技術を採用している KENKI DRYER は他にはない構造でどこもできない高含水率の付着物・粘着物・固着性や液体状の乾燥物でも乾燥機内部に詰まることなく運転トラブルが全くない安定運転での乾燥ができます。固形物であっても乾燥機内部で粉砕しながら乾燥するためは、乾燥物は小さく砕かれ内部まで十分加熱乾燥され排出されます。
高含水率の有機廃棄物、お茶殻、おから、家畜糞尿、食べ物の残渣・粕、野菜、果物残渣・粕、水産加工物の残渣・粕等様々な物の乾燥は、スムーズにできいずれも安定した品質の製品として乾燥後は排出されます。
熱源には飽和蒸気を使用し、飽和蒸気のみの熱源では他にはない乾燥効率の良い伝導伝熱式と熱風式を組み合わせた画期的な乾燥方式を取りながら低温での乾燥です。低温乾燥ですので高含水率の有機廃棄物であっても成分を変化させずに加熱乾燥することができ、乾燥後は燃料、肥料、土壌改良剤、飼料等様々な用途に利用でき場合によっては高い価格で販売でき環境への貢献も出来ます。KENKI DRYER は国際特許技術により乾燥対象物の内部まで十二分に乾燥でき、乾燥後は非常に安定した均一な状態で排出されます。
又、高含水率の有機廃棄物は KENKI DRYER で乾燥後は弊社取り扱いの 熱分解装置 Biogreen で熱分解することにより ガス、オイル、バイオ炭製造が可能で、それを利用しガス化発電、蒸気を製造あるいはバイオ炭を燃料、土壌改良剤等として販売する事が可能です。
日本 、米国、台湾、フランス、ドイツ、イギリス、スイス、カナダ 特許取得済
■ 乾燥機構 KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。 |
乾燥装置 KENKI DRYER の特徴ある独自の乾燥の機構も国際特許技術です。粉砕乾燥、撹拌乾燥、循環乾燥そして間接乾燥 と言った4つの乾燥機構が同時に乾燥対象物に対し加熱乾燥動作を絶え間なく繰り返し行われることにより乾燥対象物の内部まで十分に乾燥され乾燥後の製品の品質が一定です。乾燥対象物投入時から乾燥後排出まで乾燥対象物の乾燥が不十分になりやすい塊化を防ぎ、乾燥対象物の内部まで熱が十二分に行き渡るよう様々な工夫がなされており常に安定した加熱乾燥が行われています。
熱源が飽和蒸気のみの伝導伝熱式での乾燥方式でありながら、外気をなるべく取り入れない他にはない独自の機構で乾燥機内の温度は、外気温度に影響されず常に高温で一定に保たれています。それは外気を取り入れない特徴ある独自の乾燥機構で内部の空気をブロワ、ファンで吸い込み乾燥機内部の上部に設置されている熱交換器で加熱し、その加熱された空気熱風をせん断、撹拌を繰り返しながら加熱搬送されている乾燥対象物へ吹き付け当てています。わざわざ熱風を起こしそれを乾燥対象物へ吹き付け当てているのですが、外気を取り入れそれを加熱するのではなく乾燥機内部の高温の空気をさらに加熱しながら乾燥対象物へ当て乾燥を促進しています。洗濯物が風でよく乾くという乾燥機構を取り入れ熱風対象物に熱風を当てることによる熱風乾燥です。今内容により、KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。
日本、米国、台湾、フランス、ドイツ、イギリス、スイス、カナダ 8ケ国11件特許取得済。
■ 熱源 飽和蒸気 |
KENKI DRYERの乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風併用で他にはない画期的な乾燥方式を取り入れ安全衛生面で優れ、安定した蒸気を熱源とするため乾燥後の乾燥物の品質は均一で安定しています。蒸気圧力は最大0.7MpaGまで使用可能で、乾燥条件により蒸気圧力の変更つまり乾燥温度の調整は簡単に行なえます。飽和蒸気は一般の工場では通常利用されており取り扱いに慣れた手軽な熱源だと言えます。バーナー、高温の熱風を利用する乾燥と比較すると、飽和蒸気はパイプ内を通し熱交換で間接乾燥させる熱源であることから、低温で燃える事はなく安全衛生面、ランニングコスト面で優れています。
飽和蒸気には特有の特徴があります。蒸気圧力の変更に伴い蒸気温度が変わるため、乾燥温度の調整が簡単に行なます。又、凝縮熱、潜熱を利用できるため温水、油等の顕熱利用と比較すると熱量が2~5倍で乾燥に最適な熱源と言えます。
飽和蒸気は乾燥後ドレンとなりますがそれは回収ができ蒸気発生装置ボイラーへの供給温水として利用すれば燃料費等のランニングコストは安価で済みます。
熱源である飽和蒸気の消費量は少ないため、新規にボイラー導入せず工場内余剰蒸気を利用することにより脱炭素、燃料費削減が可能です。
どこもできない付着物、粘着物及び液体状の乾燥に是非 KENKI DRYER をご検討下さい。 |
国際特許技術の簡単な構造でイニシャル、ランニング、メンテナンスコストが安価です。 |
汚泥乾燥では乾燥機械代金を産廃費削減約2、3年での償却を目指しています。 |
原料スラリー乾燥では箱型棚段乾燥の置き換えで人手がいらず乾燥の労力が大幅に減ります。 |
有機廃棄物乾燥では燃料、肥料、土壌改良剤、飼料等へ再資源化リサイクル利用ができます。 |
熱分解装置 Biogreen 火気を一切使用しない国際特許技術の熱分解装置 | https://biogreen-jp.com |
会社サイト もう悩みません。コンベヤ、産業環境機械機器 | https://kenki-corporation.jp |