電荷について / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機
どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件の特許を取得済み独自技術を持つ画期的な乾燥装置です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。
日本、台湾、米国、フランス、ドイツ、イギリス、スイス、カナダ 8ケ国 11件特許取得済。
■ 電荷とは |
原子は電気的には中性で電気を帯びていませんが、電子(マイナス)を失うとプラスの電気を帯び、電子(マイナス)を受け取るとマイナスの電気を帯びます。このように原子が、電気を帯びたものをイオン、その現象及び操作をイオン化と言います。このイオンが持っている電気を電荷あるいは荷電と言い、電荷の量は電荷、電荷量あるいは電気量と言います。
電子を放出して正(プラス)の電荷を帯びた原子は陽イオン(カチオン)、電子を取り込んで負(マイナス)の電荷を帯びた原子は陰イオン(アニオン)と言いますが、同じ符号同士の電荷は反発し(斥力、せきりょく)、異なる符号同士は引き合います(引力)。
電荷量、電気量の単位は C(クーロン)で、1C という量は、1A の電流が流れているとき、その導線の断面を1秒間に通過する電荷量、電気量と定められています。1Cの電荷の移動を電子の数に換算すると、約624億の1億倍の数の電子の移動となります。
電荷(でんか、英語: electric charge)は、粒子や物体が帯びている電気の量であり、また電磁場から受ける作用の大きさを規定する物理量である。 荷電とも、また電気量とも呼ぶ。電荷の量は電荷量と言い、電荷量のことを単に「電荷」と呼んだり、電荷を持つ粒子のことを電荷と呼んだりすることもある。
出典:Wiki 電荷
イオン |
画像出典:Wiki イオン
■ 帯電とは |
帯電とは、物体が電気を帯びる現象を指します。原子が電子を放出して正(プラス)の電荷を帯びた陽イオン(カチオン)、あるいは電子を取り込んで負(マイナス)の電荷を帯びイオン化した現象のことです。つまり、正(プラス)電荷か負(マイナス)電荷のどちらかの方が多いとき、その物体や空間は帯電していると言います。
又、電気を帯びその電気が静止した状態を静電気と言いますが、帯電の現象を静電気と呼ぶことがあります。静電気は放電も含むので帯電は静電気の一部と言えます。
帯電(たいでん)は、物体が電気を帯びる現象である。別の物体から電子を奪った場合には負に帯電し、逆の場合は正に帯電する。奪うことを引き起こす力は別に議論されなければならないが、帯電したまま動かずにいる電気を静電気という。絶縁体同士を摩擦することなどにより、この現象を起こすことができる。たとえばエボナイト棒を乾いた布でこすったり、プラスティックの下敷きで髪をこすったりすると、それぞれ帯電する。帯電した物体が他の物体を引き寄せるなどの性質(クーロン力)を持っていることは、古代から知られていた。近代になってから、この現象の本格的な研究が始まり、これをきっかけに、電磁気学が発展していった。近年ではこうした帯電現象を利用した様々な装置が日常生活に浸透してきている。
出典:Wiki 帯電
■ 電流とは |
電流とは、負(マイナス)の電荷を持つ電子が導体中を移動する流れ、あるいはある導線の断面を単位時間に通過する電荷量(電子)の量のことです。電荷の移動がない状態は静電気(帯電)です。
電子と電流の流れる向きは逆で、電子が負極(マイナス)から正極(プラス)に向って、電流は正極(プラス)から負極(マイナス)に向って流れます。
電流の単位は A(アンペア)で1s(秒)間に1C(クーロン)の電荷が流れる際、電流の大きさは1Aと定められています。
又、電流と電子の流れが逆なのは、電子が発見される前に「電流は正極(プラス)から負極(マイナス)へ向かって流れる」と決められ、それがそのまま残っているためです。
電流(でんりゅう、英: electric current)は、電子に代表される荷電粒子の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。
電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。
国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A である。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは I で表現する。電気工学などで電流はiを用いるため 複素数単位をjで表現する。
出典:Wiki 電流
■ 電荷素量とは |
電荷素量とは電荷の最小値です。正(プラス)電荷の陽子及び負(マイナス)電荷の電子が持つ値で 記号は eで表し、陽子1個の電荷素量は eC(クーロン)で電子1個の電荷素量は -eC(クーロン)で表します。
電子素量のSI値は e=1.602×10-19C(クーロン)です。
電気素量 (でんきそりょう、英: elementary charge)は、電気量の単位となる物理定数である。陽子あるいは陽電子1個の電荷に等しく、電子の電荷の符号を変えた量に等しい。素電荷(そでんか)、電荷素量とも呼ばれる。一般に記号 e で表される。
出典:Wiki 電気素量
■ 電荷保存則とは |
電荷保存則とは、電荷の総量は時間経過に係わらず永遠に変わらないという法則です。又、電荷は何も無いところから生まれたり、消滅することもありません。電荷保存則は、電気量保存の法則とも言います。
電荷保存則(でんかほぞんそく、英: Charge conservation)とは、電荷の総量は永遠に変わらないという法則である。
電荷が化学反応から原子核反応、粒子の崩壊や対生成・対消滅に至るまで、現在確認されている全ての反応で保存しており、今までに反例が見つかっていないと言う経験的事実から導き出された法則である。
出典:Wiki 電荷保存則
陽イオンカチオン電子を放出して正の電荷を帯びた原子、または原子団を陽イオン(ようイオン、英: positive ion)、あるいはカチオン (cation) と呼ぶ。金属元素には安定した陽イオンを形成するものが多い。陰イオンアニオン電子を受け取って負の電荷を帯びた原子、または原子団を陰イオン(いんイオン、negative ion)、あるいはアニオン (anion) と呼ぶ。ハロゲンや酸素などは安定した陰イオンを形成する。
出典:Wiki イオン
導体 (英: conductor)
- 通常は、電気を通す物体(物質)のこと。→電気伝導体
- イオンを通す物体(物質)のこと。→イオン伝導体
出典:Wiki 導体
静電気(せいでんき、static electricity)とは、静止した電荷によって引き起こされる物理現象。
静電気は、物体(主に誘電体)に電荷が蓄えられている(帯電する)状態や、蓄えられている電荷そのもののことを指す場合もある。電荷は常に電界による効果と磁界による効果を持つが、静電気と呼ばれるのは電界による効果が際立っている場合である。
出典:Wiki 静電気
電荷 | イオンが持っている電気あるいはその量。 |
帯電 | 物体が電気を帯びる現象。 |
電流 | 負(マイナス)の電荷を持つ電子が導体中を移動する流れ、あるいはある導線の断面を単位時間に通過する電荷量(電子)の量。 |
電荷素量 | 電荷の最小値。 |
電荷保存則 | 電荷の総量は時間経過に係わらず永遠に変わらないという法則。 |
イオン化エネルギー | 原子から電子を1個を取り除き1価の陽イオン(カチオン)になる際に吸収するエネルギー。 |
電子親和力 | 原子が1個の電子を取り込み1価の陰イオン(アニオン)になる際に放出するエネルギー。 |
エネルギー | 物質などが持っている仕事をすることができる能力。 |
イオン | 原子は電気的には中性で電気を帯びていないが、電子(マイナス)を失うとプラスの電気を帯び、電子(マイナス)を受け取るとマイナスの電気を帯びる。このように原子が、電気を帯びたもの。 |
イオン化(電離) | イオンになる現象及び操作。 |
イオン化傾向 | 水中での金属のイオンへのなりやすさ。 |
周期表 | 元素を原子番号の順に並べた表。 |
化学結合 | 分子内結合及び分子間結合など、つなぎあわせる結合。 |
分子内結合 | 分子内の原子同士をつなぎ合わせる結合。 |
分子 | 非金属のいくつかの原子が結合し安定した形になった物質。 |
原子 | 物質とは粒子の集合体で、原子はその物質を構成する粒子。 |
元素 | 原子の種類。 |
分子間結合 | 分子と別の分子とをつなぎ合わせる結合。 |
分子間力 | 分子間結合での分子間同士で働く力。 |
■ 熱源 飽和蒸気 |
KENKI DRYERの乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風併用で他にはない画期的な乾燥方式を取り入れ安全衛生面で優れ、安定した蒸気を熱源とするため乾燥後の乾燥物の品質は均一で安定しています。蒸気圧力は最大0.7Mpaまで使用可能で、乾燥条件により蒸気圧力の変更つまり乾燥温度の調整は簡単に行なえます。飽和蒸気は一般の工場では通常利用されており取り扱いに慣れた手軽な熱源だと言えます。バーナー、高温の熱風を利用する乾燥と比較すると、飽和蒸気はパイプ内を通し熱交換で間接乾燥させる熱源であることから、低温で燃える事はなく安全衛生面、ランニングコスト面で優れています。
飽和蒸気には特有の特徴があります。蒸気圧力の変更に伴い蒸気温度が変わるため、乾燥温度の調整が簡単に行なます。又、凝縮熱、潜熱を利用できるため温水、油等の顕熱利用と比較すると熱量が2~5倍で乾燥に最適な熱源と言えます。
飽和蒸気は乾燥後ドレンとなりますがそれは回収ができ蒸気発生装置ボイラーへの供給温水として利用すれば燃料費等のランニングコストは安価で済みます。
昨今、KENKI DRYER に求められる内容に二酸化炭素CO2 の削減があります。ヒートポンプ自己熱再生乾燥機 KENKI DRYER であれば、二酸化炭素CO2 が大量に削減ができる上、燃料費も大幅な削減が可能になるでしょう。
どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件の特許を取得済み独自技術を持つ画期的な製品です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。
■ ヒートポンプの工程 |
■ ヒートポンプ自己熱再生乾燥機 KENKI DRYER について |
蒸気(飽和蒸気)でのヒートポンプ自己熱再生乾燥機 KENKI DRYER とは、乾燥熱源である蒸気を利用した自己熱再生乾燥システムです。
蒸気ヒートポンプの工程は、KENKI DRYER で加熱乾燥に利用した蒸気を膨張弁での断熱膨張により圧力は低下し、蒸気内の水分は蒸発、気化し周辺の熱を吸収し蒸気温度は下降します。その蒸気を次の工程の熱交換器で熱移動することによりさらに蒸発、気化させ蒸気圧力を低下させます。十分に蒸発、気化が行われ圧力が下げられた蒸気は次の圧縮工程へ進みます。
圧縮工程の圧縮機で蒸気を断熱圧縮を行うことで、圧力は上昇しそれに伴い凝縮、液化し温度は上昇します。その蒸気の水分を除去した上で KENKI DRYER へ投入します。KENKI DRYER はその投入された蒸気を熱源として利用、加熱乾燥という熱移動を行うことで、蒸気はさらに十分に凝縮、液化され膨張弁へ進みます。この工程を繰り返します。
■ 乾燥機構 KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。 |
乾燥装置 KENKI DRYER の特徴ある独自の乾燥の機構も国際特許技術です。粉砕乾燥、撹拌乾燥、循環乾燥そして間接乾燥 と言った4つの乾燥機構が同時に乾燥対象物に対し加熱乾燥動作を絶え間なく繰り返し行われることにより乾燥対象物の内部まで十分に乾燥され乾燥後の製品の品質が一定です。乾燥対象物投入時から乾燥後排出まで乾燥対象物の乾燥が不十分になりやすい塊化を防ぎ、乾燥対象物の内部まで熱が十二分に行き渡るよう様々な工夫がなされており常に安定した加熱乾燥が行われています。
熱源が飽和蒸気のみの伝導伝熱式での乾燥方式でありながら、外気をなるべく取り入れない他にはない独自の機構で乾燥機内の温度は、外気温度に影響されず常に高温で一定に保たれています。それは外気を取り入れない特徴ある独自の乾燥機構で内部の空気をブロワ、ファンで吸い込み乾燥機内部の上部に設置されている熱交換器で加熱し、その加熱された空気熱風をせん断、撹拌を繰り返しながら加熱搬送されている乾燥対象物へ吹き付け当てています。わざわざ熱風を起こしそれを乾燥対象物へ吹き付け当てているのですが、外気を取り入れそれを加熱するのではなく乾燥機内部の高温の空気をさらに加熱しながら乾燥対象物へ当て乾燥を促進しています。洗濯物が風でよく乾くという乾燥機構を取り入れ熱風対象物に熱風を当てることによる熱風乾燥です。今内容により、KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。
どこもできない付着物、粘着物及び液体状の乾燥に是非KENKI DRYER をご検討下さい。 |
国際特許技術の簡単な構造でイニシャル、ランニング、メンテナンスコストが安価です。 |
汚泥乾燥では乾燥機械代金を産廃費削減約2、3年での償却を目指しています。 |
原料スラリー乾燥では箱型棚段乾燥の置き換えで人手がいらず乾燥の労力が大幅に減ります。 |
有機廃棄物乾燥では燃料、肥料、土壌改良剤、飼料等へ再資源化リサイクル利用ができます。 |
熱分解装置 Biogreen 火気を一切使用しない国際特許技術の熱分解装置 | https://biogreen-jp.com |
会社サイト もう悩みません。コンベヤ、産業環境機械機器 | https://kenki-corporation.jp |