物質ついて / 泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件の特許を取得済み独自技術を持つ画期的な乾燥装置です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。
日本、台湾、米国、フランス、ドイツ、イギリス、スイス、カナダ 8ケ国 11件特許取得済。

 

■ 物体と物質

 

物体物質は異なります。例えばコップはガラスでできていますが、コップは物体でガラスは物質です。

物体形や使い道によって名前が付けられている。
例えば、乾燥機、脱水機、パソコン、スマホ、シャープペン、溶接機、旋盤等
物質大きさや形などに関わらない、材料や材質の名前。
1つ、2つと数えられない。何グラムとか、何mlとか、分量で数える。
例えば、水、鉄、ステンレス、プラスチック、塩ビ、金、ゴム、パッキン等

 

 

物体は、ものとして認知しうる対象物である。すなわち、実物または実体として宇宙空間において存在するものが物体である。物理学および哲学の主要な研究対象の一つである。
物体と物質は次のように区別される。
物体 – その物の大きさ・形など、外見に着目した時に言う。
物質 – その物の構造・構成元素など、性質に着目した時に言う。

出典:Wiki 物体

物質は、最も初等的には、場所をとり一定の量(mass)をもつもののことである。同じことを、もう少し技術的用語を使えば、ものが質量と体積を持っていれば物質であるというのが古典的概念である。

出典:Wiki 物質

 

 

■ 物質の分類

 

物質の分類 ヒートポンプ汚泥乾燥機 KENKI DRYER 2020.10.26

 

 

■ 純物質と混合物

 

他の物質が混ざっておらず、1種類の成分からできている物質を純物質と言います。この純物質には、単体化合物があります。

一方、2種類以上の純物質が単に混ざり合ったものを混合物と言います。例としては、空気、海水、石油、牛乳などです。

実際のところ身の回りにある物質は、殆どが混合物です。その混合物から純物質を分離させる方法としては、ろ過、蒸留・分溜、再結晶、抽出、昇華、クロマトグラフィーがあります。

 

純物質他の物質が混ざっておらず、1種類の成分からできている物質。
混合物2種類以上の純物質が単に混ざり合ったもの。

 

 

純物質英: pure substanceとは、一定の性質を持つ化学物質のこと。教科書などには純粋な物質と記されていることがある。特に水素や酸素など単一の元素(厳密には同素体)からのみ構成されるものを単体、水など複数の元素が化合してできたものを化合物という。
純物質を構成しているそれぞれの元素の組成や密度・融点・沸点は一定であり、それらの物理的性質から物質の種類を判別することができる。複数の純物質が混合してできた物質は混合物という。
純物質は物理的方法(ろ過・蒸留・再結晶・クロマトグラフィーなど)ではこれ以上分離しない。しかし、化学的方法(電気分解など)を用いれば単体にまで分解することができる。

出典:Wiki 純物質

混合物(こんごうぶつ、mixture)とは、複数の種類のものが混じり合ってできたもののこと。化学的には複数の物質が混じり合ってできた物質のことであり、たとえば空気は窒素・酸素・アルゴン・二酸化炭素などの混合物である。化学物質の混合物であることを示す場合は、特に化学混合物 (chemical mixture) とも呼ぶ。

出典:Wiki 混合物

成分(せいぶん)
原材料 – 物を作る際に元となるもの。化学分野では成分。

出典:Wiki 成分

 

■ 単体と分子と同素体

 

単体とは純物質のうち1種類の元素のみで構成されている物質のことです。
分子とは原子同士の結合で形成されたものですが、金属は1種類の元素のみで存在しますが、分子ではありません。
同素体とは、同じ元素のみで形成されているのです
、性質が異なる単体のことをいいます。原子の配列や結合方式が異なるため性質が異なっています。例としては硫黄S炭素C酸素OリンPがあります。

 

単体純物質のうち1種類の元素のみで構成されている物質。
同素体同じ元素のみで形成されているが、性質が異なる単体。
分子原子同士の結合で形成されたもの。

 

 

同素体
硫黄S斜方硫黄S、単斜硫黄S、ゴム状硫黄Sn
炭素Cダイヤモンド、黒鉛、フラーレン
酸素O酸素O2、オゾンO3
リンP赤リン、黄リン 

 

 

単体(たんたい、simple substance)とは、単一の元素からできている純物質のことである。 水素 (H2)、酸素 (O2) などの等核二原子分子や、ナトリウム (Na)、金 (Au) などの純金属が含まれる。 これに対して、水 (H2O) など2種類以上の元素からできている純物質は化合物という。
酸素 (O2) とオゾン (O3)、あるいは赤リンと白リンのように、同じ元素からできた単体であっても、異なる性質を示す場合がある。 このような単体同士の関係を同素体という。 たとえば、ダイヤモンドとグラファイトを混ぜ合わせた物質は、単一の炭素原子からできているが、密度・融点・沸点などの物理的性質が一定にさだまらないので純物質ではなく(したがって単体でもなく)、2種類の単体(炭素の同素体)の混合物である。

出典:Wiki 単体

分子(ぶんし、英: molecule)とは、2つ以上の原子から構成される電荷的に中性な物質を指す。厳密には、分子は少なくとも1つ以上の振動エネルギー準位を持つほどに充分に深いエネルギーポテンシャル表面のくぼみを共有する原子の集まりを指す。ほとんどの原子は、同種あるいは異なる原子と化学結合により結びついて分子を形成する。

出典:Wiki 分子

同素体(どうそたい、英語: allotrope、英語: allotropismとは、同一元素の単体のうち、原子の配列(結晶構造)や結合様式の関係が異なる物質同士の関係をいう。同素体は単体、すなわち互いに同じ元素から構成されるが、化学的・物理的性質が異なる事を特徴とする。
典型的な例としてよく取り上げられるものに、ダイヤモンドと黒鉛(グラファイト)がある。 炭素の同素体である両者は硬度以外にも、透明度や電気伝導性が大きく異なるが、これはダイヤモンドの分子(正四面体の格子) とグラファイトの分子(平面的な六方格子の層)の構造に大きな違いがあるためで、物性における分子構造の重要性を示す例となっている。
多くの同素体は安定した分子として存在し、相転移(気体、液体、固体)しても化学形は変化しない (例:O2、O3) が、例外的にリンの同素体は固体でのみ現れ、液体ではすべて P4 の形を取る。

出典:Wiki 同素体

 

■ 化合物とは

 

化合物とは純物質のうち2種類以上の元素から構成されている物質のことです。例として酸素O2、水素H2、窒素N2、水H2O、グルコースC6H12O6などがあります。
又、化合物は有機化合物無機化合物に大別されます。

 

化合物(かごうぶつ、英語: chemical compoundとは、化学反応を経て2種類以上の元素が結合することによって生成する物質であり、言い換えると2種類以上の元素が化学結合で結びついた純物質とも言える。例えば、水 (H2O) は水素原子 (H) 2個と酸素原子 (O) 1個からなる化合物である。水が水素や酸素とは全く異なる性質を持っているように、一般的に、化合物の性質は、含まれている元素の単体の性質とは全く別のものである。

出典:Wiki 化合物

 

■ 有機化合物と無機化合物

 

炭素の化合物を有機化合物それ以外のものは無機化合物とされています。単に有機物無機物とも言います。
実際は、炭素化合物の全てを有機化合物とは言わず、一酸化炭素、二酸化炭素、炭酸塩、青酸、シアン酸塩、チオシアン酸塩等の単純なものは例外的に無機化合物として取り扱われています。
他、四塩化炭素、ホスゲン、シアンなどは中間的なもので有機化合物としても、あるいは無機化合物としても取り扱うことがあります。

 

有機化合物
有機物
炭素の化合物。
無機化合物
無機物
炭素の化合物以外のもの。

 

 

有機化合物(ゆうきかごうぶつ、英: organic compoundは、炭素を含む化合物の大部分をさす。炭素原子が共有結合で結びついた骨格を持ち、分子間力によって集まることで液体や固体となっているため、沸点・融点が低いものが多い。
下記の歴史的背景から、炭素を含む化合物であっても、一酸化炭素、二酸化炭素、炭酸塩、青酸、シアン酸塩、チオシアン酸塩等の単純なものは例外的に無機化合物と分類し、有機化合物には含めない。例外は慣習的に決められたものであり、現代では単なる「便宜上の区分」である。有機物質(ゆうきぶっしつ、英: organic substance)あるいは有機物(ゆうきぶつ、英: organic matter)とも呼ばれる

出典:Wiki 有機化合物

無機化合物(むきかごうぶつ、英語: inorganic compoundは、有機化合物以外の化合物であり、具体的には単純な一部の炭素化合物(下に示す)と、炭素以外の元素で構成される化合物である。“無機”には「生命力を有さない」と言う意味があり、“機”には「生活機能」と言う意味がある。
炭素化合物のうち無機化合物に分類されるものには、グラファイトやダイヤモンドなど炭素の同素体、一酸化炭素や二酸化炭素、二硫化炭素など陰性の元素と作る化合物、あるいは炭酸カルシウムなどの金属炭酸塩、青酸と金属青酸塩、金属シアン酸塩、金属チオシアン酸塩、金属炭化物などの塩が挙げられる。

出典:Wiki 無機化合物

 

■ 化合物と混合物の違い

 

化合物とは、2種類以上の物質同士が化学反応を起こして別の物質になっています。一方、混合物は2種類以上の物質が単純に混ざり合っているだけです。
又、化合物が化学式で書けるのに対して、混合物は化学式で書くことができません

 

 

 


■ セルフクリーニング Steam Heated Twin Screw technology
SHTS technology)

 

乾燥装置 KENKI DRYER の国際特許技術の一つが Steam Heated Twin Screw technology (SHTS technology)でセルフクリーニング機構です。この機構によりどこもできないどんなに付着、粘着、固着する乾燥対象https://kenkidryer.jp/products/patents/物でも独自の構造で機械内部に詰まることなく乾燥できます。
例えば乾燥対象物が羽根に付着したとしても、その付着物を乾燥機内の左右の羽根が強制的に剥がしながら回転します。どんなに付着、粘着、固着性がある乾燥物でも左右の羽根が剥がしながら回転するため羽根に付着することなく、そして停止することなく羽根は常に回転し続け、剥がし、撹拌、加熱乾燥を繰り返しながら搬送されます。又、常に羽根の表面は更新され綺麗なため羽根よりの熱は遮るものなく乾燥物にいつも直接伝えることができます。どこも乾燥ができない付着、粘着性が強い物あるいは原料スラリー等の液体状に近い状態で投入したとしてもこのテクノロジーで全く問題なく確実に乾燥ができます。このSHTSテクノロジーは約7年以上を経て完成させており国内はもとより海外でも特許を取得、出願しております。

日本、米国、台湾、フランス、ドイツ、イギリス、スイス、カナダ特許取得済。

セルフクリ-ニング

 

■ 乾燥機構
KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。

 

乾燥装置 KENKI DRYER の特徴ある独自の乾燥の機構も国際特許技術です。粉砕乾燥、撹拌乾燥、循環乾燥そして間接乾燥 と言った4つの乾燥機構が同時に乾燥対象物に対し加熱乾燥動作を絶え間なく繰り返し行われることにより乾燥対象物の内部まで十分に乾燥され乾燥後の製品の品質が一定です。乾燥対象物投入時から乾燥後排出まで乾燥対象物の乾燥が不十分になりやすい塊化を防ぎ、乾燥対象物の内部まで熱が十二分に行き渡るよう様々な工夫がなされており常に安定した加熱乾燥が行われています。
熱源が飽和蒸気のみの伝導伝熱式での乾燥方式でありながら、外気をなるべく取り入れない他にはない独自の機構で乾燥機内の温度は、外気温度に影響されず常に高温で一定に保たれています。それは外気を取り入れない特徴ある独自の乾燥機構で内部の空気をブロワ、ファンで吸い込み乾燥機内部の上部に設置されている熱交換器で加熱し、その加熱された空気熱風をせん断、撹拌を繰り返しながら加熱搬送されている乾燥対象物へ吹き付け当てています。わざわざ熱風を起こしそれを乾燥対象物へ吹き付け当てているのですが、外気を取り入れそれを加熱するのではなく乾燥機内部の高温の空気をさらに加熱しながら乾燥対象物へ当て乾燥を促進しています。洗濯物が風でよく乾くという乾燥機構を取り入れ熱風対象物に熱風を当てることによる熱風乾燥です。今内容により、KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。

日本、米国、台湾、フランス、ドイツ、イギリス、スイス、カナダ特許取得済。

乾燥機構

 

■ 熱源 飽和蒸気


KENKI DRYER
の乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風併用で他にはない画期的な乾燥方式を取り入れ安全衛生面で優れ、安定した蒸気を熱源とするため乾燥後の乾燥物の品質は均一で安定しています。蒸気圧力は最大0.7MpaGまで使用可能で、乾燥条件により蒸気圧力の変更つまり乾燥温度の調整は簡単に行なえます。飽和蒸気は一般の工場では通常利用されており取り扱いに慣れた手軽な熱源だと言えます。バーナー、高温の熱風を利用する乾燥と比較すると、飽和蒸気はパイプ内を通し熱交換で間接乾燥させる熱源であることから、低温で燃える事はなく安全衛生面、ランニングコスト面で優れています。

飽和蒸気には特有の特徴があります。蒸気圧力の変更に伴い蒸気温度が変わるため、乾燥温度の調整が簡単に行なます。又、凝縮熱、潜熱を利用できるため温水、油等の顕熱利用と比較すると熱量が2~5倍で乾燥に最適な熱源と言えます。
飽和蒸気は乾燥後ドレンとなりますがそれは回収ができ蒸気発生装置ボイラーへの供給温水として利用すれば燃料費等のランニングコストは安価で済みます。

 

 

熱源 蒸気

KENKI DRYER 熱源蒸気とヒートポンプについて / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

 

 


昨今、KENKI DRYER に求められる内容に二酸化炭素CO2 の削減があります。ヒートポンプ自己熱再生乾燥機 KENKI DRYER であれば、二酸化炭素CO2 が大量に削減ができる上、燃料費も大幅な削減が可能になるでしょう。
どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件の特許を取得済み独自技術を持つ画期的な製品です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。

 

■ ヒートポンプの工程

 

ヒートポンプの工程 ヒートポンプ汚泥乾燥機 スラリー乾燥機 kenki dryer 2020.7.9

 


■ ヒートポンプ自己熱再生乾燥機 KENKI DRYER について

 

蒸気(飽和蒸気)でのヒートポンプ自己熱再生乾燥機 KENKI DRYER とは、乾燥熱源である蒸気を利用した自己熱再生乾燥システムです。
蒸気ヒートポンプの工程は、KENKI DRYER で加熱乾燥に利用した蒸気を膨張弁での断熱膨張により圧力は低下し、蒸気内の水分は蒸発、気化し周辺の熱を吸収し蒸気温度は下降します。その蒸気を次の工程の熱交換器で熱移動することによりさらに蒸発、気化させ蒸気圧力を低下させます。十分に蒸発、気化が行われ圧力が下げられた蒸気は次の圧縮工程へ進みます。
圧縮工程の圧縮機で蒸気を断熱圧縮を行うことで、圧力は上昇しそれに伴い凝縮、液化し温度は上昇します。その蒸気の水分を除去した上で KENKI DRYER へ投入します。KENKI DRYER はその投入された蒸気を熱源として利用、加熱乾燥という熱移動を行うことで、蒸気はさらに十分に凝縮、液化され膨張弁へ進みます。この工程を繰り返します。

 

ランニングコスト削減 二酸化炭素排出量削減 ヒートポンプ乾燥機 汚泥乾燥機 2020.6.15

 

ヒートポンプ乾燥機

 

どこもできない付着物、粘着物及び液体状の乾燥に是非KENKI DRYER をご検討下さい。
国際特許技術の簡単な構造でイニシャル、ランニング、メンテナンスコストが安価です。
汚泥乾燥では乾燥機械代金を産廃費削減約2、3年での償却を目指しています。
原料スラリー乾燥では箱型棚段乾燥の置き換えで人手がいらず乾燥の労力が大幅に減ります。
有機廃棄物乾燥では燃料、肥料、土壌改良剤、飼料等へ再資源化リサイクル利用ができます。

 

熱分解装置 Biogreen
火気を一切使用しない国際特許技術の熱分解装置
https://biogreen-jp.com
会社サイト
もう悩みません。コンベヤ、産業環境機械機器
https://kenki-corporation.jp