電気抵抗と電気抵抗率と電気伝導率 / 汚泥乾燥機,スラリー乾燥機, ヒートポンプ汚泥乾燥機

どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件の特許を取得済み独自技術を持つ画期的な乾燥装置です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。
日本、台湾、米国、フランス、ドイツ、イギリス、スイス、カナダ 8ケ国 11件特許取得済。

 

■ 電気抵抗について

 

電気抵抗とは電流の流れにくさを表した数値のことです。単位はオーム(記号:Ω)です。この数値が大きいほど電流の流れにくさを示します。
電位抵抗は、物質の種類、温度、長さ、断面積等に影響を受けます。

 

電気抵抗(でんきていこう、レジスタンス、英: electrical resistanceは、電流の流れにくさのことである。電気抵抗の国際単位系 (SI) における単位はオーム(記号:Ω)である。また、その逆数はコンダクタンス (conductance) と呼ばれ、電流の流れやすさを表す。コンダクタンスのSIにおける単位はジーメンス(記号:S)である。

出典:Wiki 電気抵抗

 

■ 電気抵抗ー物質の種類による影響

 

電流は電子の流れですが、これは物質内の自由電子の量により電気の流れは異なります。物質の内の自由電子の量によりその自由電子が移動できる量が異なり電気抵抗に影響します。物質内の自由電子の量が多いほど電気抵抗の数値は小さくなります。

 

■ 電気抵抗ー温度による影響

 

金属は温度が高くなると電気抵抗が大きくなります。金属の温度が上昇すると金属内の原子の振動が激しくなり、金属イオンと自由電子の衝突の増加に伴い自由電子の移動が阻害されます。温度上昇に伴い自由電子の進路が干渉され結晶格子を通り抜けるのが困難となり、自由電子の移動ができなくなります。
一方、半導体、絶縁体は温度が高くなると電気抵抗が小さくなります。
物質の原子内の最外殻の電子殻をまわっている価電子に対し、温度上昇に伴う熱エネルギーが原子核との束縛を外し、電子の移動を自由にします。そのため電流が流れやすくなります。
電気抵抗の温度依存性を利用したセンサーに金属では白金抵抗温度計があり、半導体ではサーミスタがあります。実際には、2種類の異なる金属を接触させた物正確な温度測定には熱電対が多く使用されています。

 

■ 電気抵抗ー物質の長さによる影響

 

物質の長さが長いほど原子は多く存在し、原子の数が多いほど原子配列の間を通り抜ける自由電子の移動の妨げになるものが多くなります。物質が長いほど電流は流れにくくなり、電気抵抗は大きくなります。
電気抵抗は長さに比例します。

 

■ 電気抵抗ー断面積による影響

 

断面積が大きいほど自由電子の数は多くなります。移動できる自由電子の数が多いほど電流は流れやすくなり電位抵抗は小さくなります。
電気抵抗は断面積に反比例します。

 


■ 電気抵抗率について

 

電気抵抗率とはどれだけ電気を通しにくいかを表す値です。抵抗率比抵抗とも呼ばれます。単位はオームメートル(Ω・m)で示されます。

電気抵抗率の計算式は下記です。

電気抵抗率の計算式
ρ=RA / ℓ (RA÷ℓ)
ρ:電気抵抗率、R:電気抵抗、A:導体の断面積、ℓ:導体の長さ

 

電気抵抗率 ヒートポンプ汚泥乾燥機 KENKI DRYER 2020.11.2


画像出典:Wiki 電気抵抗率

 

金属の電気抵抗率 ヒートポンプ汚泥乾燥機 KENKI DRYER 2020.11.2

出典:日本財団 図書館 

 

物質毎の電気抵抗率は下記サイトをご参照ください。
Wiki 電気抵抗率の比較

 

電気抵抗率(でんきていこうりつ、英語:electrical resistivity)は、どんな材料が電気を通しにくいかを比較するために、用いられる物性値である。単に、抵抗率(resistivity)、比抵抗(specific electrical resistance)とも呼ばれる。単位は、オームメートル(Ω・m)である。慣例的に Ω・cm もよく使われる。

出典:Wiki 電気抵抗率

 

■ 電気抵抗率ー温度特性

 

電気抵抗率は温度によって変化します。温度と電気抵抗率の関係式は下記の通りです。

温度と電気抵抗率の関係式
ρ=ρ0(1+αt)
ρ:温度がt(℃)に時の電気抵抗率、ρ0:温度が0(℃)の際の電気抵抗率、α:電気抵抗率の温度係数
温度係数aは温度が1℃上がるごとの電気抵抗率の変化量で、単位は[/℃]です。

 


■ 電気伝導率とは

 

電気伝導率(導電率、電気伝導度)とは、どれだけ電気を通しやすいかを表す値です。単位はS/m(ジーメンス毎メートル)で示されます。

電気伝導率の計算式は下記です。

電気伝導率の計算式
σ=1 / ρ
σ:電気伝導率、ρ:電気抵抗率

 

金属の電気抵抗率 ヒートポンプ汚泥乾燥機 KENKI DRYER 2020.11.2

出典:日本財団 図書館 

 

電気伝導率(でんきでんどうりつ、英: electrical conductivityとは、物質中における電気伝導のしやすさを表す物性量である。導電率(どうでんりつ)や電気伝導度(でんきでんどうど)とも呼ばれる。

出典:Wiki 電気伝導率

 


■ 電気抵抗率と電気伝導率

 

電気抵抗率ρは、電流の流れにくさを表す比例定数で、一方、電気伝導率σは、電流の流れやすさを表す比例定数です。
電気抵抗率と電気伝導率の関係式は下記です。

電気抵抗率と電気伝導率の関係式
電気伝導率σ=1 / 電気抵抗率ρ

 

 


■ 電流とは

 

電流とは自由電子の流れ、つまり負(マイナス)の電荷を持つ電子が導体中を移動する流れ、あるいはある導線の断面を単位時間に通過する電荷量(電子)の量のことです。電荷の移動がない状態は静電気(帯電)です。
電子と電流の流れる向きは逆で、電子が負極(マイナス)から正極(プラス)に向って、電流は正極(プラス)から負極(マイナス)に向って流れます。
電流の単位は A(アンペア)で1s(秒)間に1C(クーロン)の電荷が流れる際、電流の大きさは1Aと定められています。
又、電流と電子の流れが逆なのは、電子が発見される前に「電流は正極(プラス)から負極(マイナス)へ向かって流れる」と決められ、それがそのまま残っているためです。

 

電流(でんりゅう、英: electric currentは、電子に代表される荷電粒子の移動に伴う電荷の移動(電気伝導)のこと、およびその物理量として、ある面を単位時間に通過する電荷の量のことである。
電流における電荷を担っているのは電子と陽子である。電線などの電気伝導体では電子であり、電解液ではイオン(電子が過不足した粒子)であり、プラズマでは両方である。
国際単位系 (SI) において、電流の大きさを表す単位はアンペアであり、単位記号は A である。また、1アンペアの電流で1秒間に運ばれる電荷が1クーロンとなる。SI において電荷の単位を電流と時間の単位によって構成しているのは、電荷より電流の測定の方が容易なためである。電流は電流計を使って測定する。数式中で電流量を表すときは I で表現する。電気工学などで電流はiを用いるため 複素数単位をjで表現する。

出典:Wiki 電流

 

■ 価電子とは

 

原子は原子核と電子からできており、原子核の周りを電子が常に回転しています。その原子の最外殻の電子を価電子と言います。
電子はマイナスの電荷を持ち、原子核内の陽子と互いに引き合う引力で回転しています。この引力は電子と陽子の距離が近いほど強く、距離が遠いほど弱くなります。
原子核からの引力が弱いと、原子核から離れやすく電子は不安定です。又、最外殻にある電子、価電子は最も持つエネルギーが高く他の原子との結合がしやすい状態にあります。一方、内側の電子殻にある電子は、価電子に比べてエネルギーが低く電子核からの引力も強いため、安定しており内側に存在しています。
2個の原子が近づくと、各原子の電子軌道上にある価電子が共有され結合します。価電子には非共有電子対不対電子があり、共有できるのは不対電子のみで、この結合を共有結合と言います。

 

価電子(かでんし、英: valence electronとは、原子内の最外殻の電子殻をまわっている電子のことである。原子価電子ともいう。基本的に価電子数は最外殻電子数と等しい。また、典型元素(貴ガスを除く)は各族番号の1の位が価電子数となる。ただし、最外殻電子がちょうどその電子殻の最大収容数の場合、または最外殻電子が8個の場合、価電子の数は0とする。

出典:Wiki 価電子

 

 

電気電荷の移動や相互作用によって発生するさまざまな物理現象。自由電子が動くこと。
電流負(マイナス)の電荷を持つ電子が導体中を移動する流れ、あるいはある導線の断面を単位時間に通過する電荷量(電子)の量。
電荷イオンが持っている電気あるいはその量。
自由電子物質内で原子間結合に束縛されず自由に動き回れる電子。
帯電物体が電気を帯びる現象。
価電子原子の最外殻の電子。
電場ある電荷の存在により静電気力(クーロン力)が発生する空間。電界。
磁場磁気が発生する空間。磁界。

 

 

電気と電流 / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

価電子について / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

 

 

 


■ セルフクリーニング Steam Heated Twin Screw technology
SHTS technology)

 

乾燥装置 KENKI DRYER の国際特許技術の一つが Steam Heated Twin Screw technology (SHTS technology)でセルフクリーニング機構です。この機構によりどこもできないどんなに付着、粘着、固着する乾燥対象https://kenkidryer.jp/products/patents/物でも独自の構造で機械内部に詰まることなく乾燥できます。
例えば乾燥対象物が羽根に付着したとしても、その付着物を乾燥機内の左右の羽根が強制的に剥がしながら回転します。どんなに付着、粘着、固着性がある乾燥物でも左右の羽根が剥がしながら回転するため羽根に付着することなく、そして停止することなく羽根は常に回転し続け、剥がし、撹拌、加熱乾燥を繰り返しながら搬送されます。又、常に羽根の表面は更新され綺麗なため羽根よりの熱は遮るものなく乾燥物にいつも直接伝えることができます。どこも乾燥ができない付着、粘着性が強い物あるいは原料スラリー等の液体状に近い状態で投入したとしてもこのテクノロジーで全く問題なく確実に乾燥ができます。このSHTSテクノロジーは約7年以上を経て完成させており国内はもとより海外でも特許を取得、出願しております。

日本、米国、台湾、フランス、ドイツ、イギリス、スイス、カナダ特許取得済。

セルフクリ-ニング

 

■ 乾燥機構
KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。

 

乾燥装置 KENKI DRYER の特徴ある独自の乾燥の機構も国際特許技術です。粉砕乾燥、撹拌乾燥、循環乾燥そして間接乾燥 と言った4つの乾燥機構が同時に乾燥対象物に対し加熱乾燥動作を絶え間なく繰り返し行われることにより乾燥対象物の内部まで十分に乾燥され乾燥後の製品の品質が一定です。乾燥対象物投入時から乾燥後排出まで乾燥対象物の乾燥が不十分になりやすい塊化を防ぎ、乾燥対象物の内部まで熱が十二分に行き渡るよう様々な工夫がなされており常に安定した加熱乾燥が行われています。
熱源が飽和蒸気のみの伝導伝熱式での乾燥方式でありながら、外気をなるべく取り入れない他にはない独自の機構で乾燥機内の温度は、外気温度に影響されず常に高温で一定に保たれています。それは外気を取り入れない特徴ある独自の乾燥機構で内部の空気をブロワ、ファンで吸い込み乾燥機内部の上部に設置されている熱交換器で加熱し、その加熱された空気熱風をせん断、撹拌を繰り返しながら加熱搬送されている乾燥対象物へ吹き付け当てています。わざわざ熱風を起こしそれを乾燥対象物へ吹き付け当てているのですが、外気を取り入れそれを加熱するのではなく乾燥機内部の高温の空気をさらに加熱しながら乾燥対象物へ当て乾燥を促進しています。洗濯物が風でよく乾くという乾燥機構を取り入れ熱風対象物に熱風を当てることによる熱風乾燥です。今内容により、KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。

日本、米国、台湾、フランス、ドイツ、イギリス、スイス、カナダ特許取得済。

乾燥機構

 

■ 熱源 飽和蒸気


KENKI DRYER
の乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風併用で他にはない画期的な乾燥方式を取り入れ安全衛生面で優れ、安定した蒸気を熱源とするため乾燥後の乾燥物の品質は均一で安定しています。蒸気圧力は最大0.7MpaGまで使用可能で、乾燥条件により蒸気圧力の変更つまり乾燥温度の調整は簡単に行なえます。飽和蒸気は一般の工場では通常利用されており取り扱いに慣れた手軽な熱源だと言えます。バーナー、高温の熱風を利用する乾燥と比較すると、飽和蒸気はパイプ内を通し熱交換で間接乾燥させる熱源であることから、低温で燃える事はなく安全衛生面、ランニングコスト面で優れています。

飽和蒸気には特有の特徴があります。蒸気圧力の変更に伴い蒸気温度が変わるため、乾燥温度の調整が簡単に行なます。又、凝縮熱、潜熱を利用できるため温水、油等の顕熱利用と比較すると熱量が2~5倍で乾燥に最適な熱源と言えます。
飽和蒸気は乾燥後ドレンとなりますがそれは回収ができ蒸気発生装置ボイラーへの供給温水として利用すれば燃料費等のランニングコストは安価で済みます。

 

 

熱源 蒸気

KENKI DRYER 熱源蒸気とヒートポンプについて / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

 

 


昨今、KENKI DRYER に求められる内容に二酸化炭素CO2 の削減があります。ヒートポンプ自己熱再生乾燥機 KENKI DRYER であれば、二酸化炭素CO2 が大量に削減ができる上、燃料費も大幅な削減が可能になるでしょう。
どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件の特許を取得済み独自技術を持つ画期的な製品です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。

 

■ ヒートポンプの工程

 

ヒートポンプの工程 ヒートポンプ汚泥乾燥機 スラリー乾燥機 kenki dryer 2020.7.9

 


■ ヒートポンプ自己熱再生乾燥機 KENKI DRYER について

 

蒸気(飽和蒸気)でのヒートポンプ自己熱再生乾燥機 KENKI DRYER とは、乾燥熱源である蒸気を利用した自己熱再生乾燥システムです。
蒸気ヒートポンプの工程は、KENKI DRYER で加熱乾燥に利用した蒸気を膨張弁での断熱膨張により圧力は低下し、蒸気内の水分は蒸発、気化し周辺の熱を吸収し蒸気温度は下降します。その蒸気を次の工程の熱交換器で熱移動することによりさらに蒸発、気化させ蒸気圧力を低下させます。十分に蒸発、気化が行われ圧力が下げられた蒸気は次の圧縮工程へ進みます。
圧縮工程の圧縮機で蒸気を断熱圧縮を行うことで、圧力は上昇しそれに伴い凝縮、液化し温度は上昇します。その蒸気の水分を除去した上で KENKI DRYER へ投入します。KENKI DRYER はその投入された蒸気を熱源として利用、加熱乾燥という熱移動を行うことで、蒸気はさらに十分に凝縮、液化され膨張弁へ進みます。この工程を繰り返します。

 

ランニングコスト削減 二酸化炭素排出量削減 ヒートポンプ乾燥機 汚泥乾燥機 2020.6.15

 

ヒートポンプ乾燥機

 

どこもできない付着物、粘着物及び液体状の乾燥に是非KENKI DRYER をご検討下さい。
国際特許技術の簡単な構造でイニシャル、ランニング、メンテナンスコストが安価です。
汚泥乾燥では乾燥機械代金を産廃費削減約2、3年での償却を目指しています。
原料スラリー乾燥では箱型棚段乾燥の置き換えで人手がいらず乾燥の労力が大幅に減ります。
有機廃棄物乾燥では燃料、肥料、土壌改良剤、飼料等へ再資源化リサイクル利用ができます。

 

熱分解装置 Biogreen
火気を一切使用しない国際特許技術の熱分解装置
https://biogreen-jp.com
会社サイト
もう悩みません。コンベヤ、産業環境機械機器
https://kenki-corporation.jp