価電子について / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機
どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件の特許を取得済み独自技術を持つ画期的な乾燥装置です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。
日本、台湾、米国、フランス、ドイツ、イギリス、スイス、カナダ 8ケ国 11件特許取得済。
■ 価電子とは |
原子は原子核と電子からできており、原子核の周りを電子が常に回転しています。その原子の最外殻の電子を価電子と言います。
電子はマイナスの電荷を持ち、原子核内の陽子と互いに引き合う引力で回転しています。この引力は電子と陽子の距離が近いほど強く、距離が遠いほど弱くなります。
原子核からの引力が弱いと、原子核から離れやすく電子は不安定です。又、最外殻にある電子、価電子は最も持つエネルギーが高く他の原子との結合がしやすい状態にあります。一方、内側の電子殻にある電子は、価電子に比べてエネルギーが低く電子核からの引力も強いため、安定しており内側に存在しています。
2個の原子が近づくと、各原子の電子軌道上にある価電子が共有され結合します。価電子には非共有電子対と不対電子があり、共有できるのは不対電子のみで、この結合を共有結合と言います。
価電子(かでんし、英: valence electron)とは、原子内の最外殻の電子殻をまわっている電子のことである。原子価電子ともいう。基本的に価電子数は最外殻電子数と等しい。また、典型元素(貴ガスを除く)は各族番号の1の位が価電子数となる。ただし、最外殻電子がちょうどその電子殻の最大収容数の場合、または最外殻電子が8個の場合、価電子の数は0とする。
出典:Wiki 価電子
原子 |
画像出典:WIKIMEDIA Atom
■ 非共有電子対とは |
原子の最外殻の電子、価電子2個が対を作っているものを非共有電子対あるいは孤立電子対と言います。これは他の原子と共有されることがなく、結合することがありません。
孤立電子対(こりつでんしつい、英: lone pair)とは、原子の最外殻の電子対のうち、共有結合に関与していない電子対のこと。それゆえ、非共有電子対(ひきょうゆうでんしつい、英: unshared electron pair)とも呼ばれる。
出典:Wiki 孤立電子対
■ 不対電子とは |
原子の最外殻の電子、価電子が、対になっておらず電子対にならない電子を不対電子と言います。
共有結合とは2個の原子がそれぞれ不対電子を出し合って電子対をつくり、共有され結合することです。この共有された電子対を共有電子対と言い、結合後、結合には関係がない余った電子対を非共有電子対と言います。
不対電子(ふついでんし、英: unpaired electron)とは、分子や原子の最外殻軌道に位置する対になっておらず、電子対を作っていない電子のこと。共有結合を作る共有電子対や非共有電子対に比べ、化学的に不安定であり、反応性が高い。有機化学においては、不対電子を持つ、寿命の短いラジカルが反応経路を説明するのに重要な役割を果たしている。
出典:Wiki 不対電子
共有結合(きょうゆうけつごう、英: covalent bond)は、原子間での電子対の共有をともなう化学結合である。結合は非常に強い。ほとんどの分子は共有結合によって形成される。また、共有結合によって形成される結晶が共有結合結晶である。配位結合も共有結合の一種である。
出典:Wiki 共有結合
価電子 | 原子の最外殻の電子。 |
非共有電子対 | 価電子2個が対を作っているもの。 |
不対電子 | 価電子が、対になっておらず電子対にならない電子。 |
イオン結合 | 陽イオン(カチオン)と陰イオン(アニオン)との間での、クーロン力の引力による結合。 |
イオン結晶 | イオン結合によってできている結晶。 |
金属元素 | 金属としての性質を持つ元素。 |
非金属元素 | 金属元素以外の元素。 |
半金属元素 | 金属と非金属の中間の性質を示す元素。 |
クーロン力 (静電気力) | 二つの電荷を持つ物質間で働く電気的な力。単位は N (ニュートン)。 |
クーロンの法則 | 二つの電荷を持つ物質間で働く電気的な力であるクーロン力は、それぞれの電荷の積に比例し、物質間の距離の2乗に反比例するという基本法則。 |
引力と斥力 | 引力又は誘引力とは、2つの物体間に働く相互に引き合う、互いを近付けようとする力。斥力(せきりょく)又は反発力とは、2つの物体間に働く相互に反発し合う互いを遠ざけようとする力。 |
電荷 | イオンが持っている電気あるいはその量。 |
帯電 | 物体が電気を帯びる現象。 |
電流 | 負(マイナス)の電荷を持つ電子が導体中を移動する流れ、あるいはある導線の断面を単位時間に通過する電荷量(電子)の量。 |
電荷素量 | 電荷の最小値。 |
電荷保存則 | 電荷の総量は時間経過に係わらず永遠に変わらないという法則。 |
イオン化エネルギー | 原子から電子を1個を取り除き1価の陽イオン(カチオン)になる際に吸収するエネルギー。 |
電子親和力 | 原子が1個の電子を取り込み1価の陰イオン(アニオン)になる際に放出するエネルギー。 |
エネルギー | 物質などが持っている仕事をすることができる能力。 |
イオン | 原子は電気的には中性で電気を帯びていないが、電子(マイナス)を失うとプラスの電気を帯び、電子(マイナス)を受け取るとマイナスの電気を帯びる。このように原子が、電気を帯びたもの。 |
イオン化(電離) | イオンになる現象及び操作。 |
イオン化傾向 | 水中での金属のイオンへのなりやすさ。 |
周期表 | 元素を原子番号の順に並べた表。 |
化学結合 | 分子内結合及び分子間結合など、つなぎあわせる結合。 |
分子内結合 | 分子内の原子同士をつなぎ合わせる結合。 |
分子 | 非金属のいくつかの原子が結合し安定した形になった物質。 |
原子 | 物質とは粒子の集合体で、原子はその物質を構成する粒子。 |
元素 | 原子の種類。 |
分子間結合 | 分子と別の分子とをつなぎ合わせる結合。 |
分子間力 | 分子間結合での分子間同士で働く力。 |
■ 熱源 飽和蒸気 |
KENKI DRYERの乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風併用で他にはない画期的な乾燥方式を取り入れ安全衛生面で優れ、安定した蒸気を熱源とするため乾燥後の乾燥物の品質は均一で安定しています。蒸気圧力は最大0.7Mpaまで使用可能で、乾燥条件により蒸気圧力の変更つまり乾燥温度の調整は簡単に行なえます。飽和蒸気は一般の工場では通常利用されており取り扱いに慣れた手軽な熱源だと言えます。バーナー、高温の熱風を利用する乾燥と比較すると、飽和蒸気はパイプ内を通し熱交換で間接乾燥させる熱源であることから、低温で燃える事はなく安全衛生面、ランニングコスト面で優れています。
飽和蒸気には特有の特徴があります。蒸気圧力の変更に伴い蒸気温度が変わるため、乾燥温度の調整が簡単に行なます。又、凝縮熱、潜熱を利用できるため温水、油等の顕熱利用と比較すると熱量が2~5倍で乾燥に最適な熱源と言えます。
飽和蒸気は乾燥後ドレンとなりますがそれは回収ができ蒸気発生装置ボイラーへの供給温水として利用すれば燃料費等のランニングコストは安価で済みます。
昨今、KENKI DRYER に求められる内容に二酸化炭素CO2 の削減があります。ヒートポンプ自己熱再生乾燥機 KENKI DRYER であれば、二酸化炭素CO2 が大量に削減ができる上、燃料費も大幅な削減が可能になるでしょう。
どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件の特許を取得済み独自技術を持つ画期的な製品です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。
■ ヒートポンプの工程 |
■ ヒートポンプ自己熱再生乾燥機 KENKI DRYER について |
蒸気(飽和蒸気)でのヒートポンプ自己熱再生乾燥機 KENKI DRYER とは、乾燥熱源である蒸気を利用した自己熱再生乾燥システムです。
蒸気ヒートポンプの工程は、KENKI DRYER で加熱乾燥に利用した蒸気を膨張弁での断熱膨張により圧力は低下し、蒸気内の水分は蒸発、気化し周辺の熱を吸収し蒸気温度は下降します。その蒸気を次の工程の熱交換器で熱移動することによりさらに蒸発、気化させ蒸気圧力を低下させます。十分に蒸発、気化が行われ圧力が下げられた蒸気は次の圧縮工程へ進みます。
圧縮工程の圧縮機で蒸気を断熱圧縮を行うことで、圧力は上昇しそれに伴い凝縮、液化し温度は上昇します。その蒸気の水分を除去した上で KENKI DRYER へ投入します。KENKI DRYER はその投入された蒸気を熱源として利用、加熱乾燥という熱移動を行うことで、蒸気はさらに十分に凝縮、液化され膨張弁へ進みます。この工程を繰り返します。
■ 乾燥機構 KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。 |
乾燥装置 KENKI DRYER の特徴ある独自の乾燥の機構も国際特許技術です。粉砕乾燥、撹拌乾燥、循環乾燥そして間接乾燥 と言った4つの乾燥機構が同時に乾燥対象物に対し加熱乾燥動作を絶え間なく繰り返し行われることにより乾燥対象物の内部まで十分に乾燥され乾燥後の製品の品質が一定です。乾燥対象物投入時から乾燥後排出まで乾燥対象物の乾燥が不十分になりやすい塊化を防ぎ、乾燥対象物の内部まで熱が十二分に行き渡るよう様々な工夫がなされており常に安定した加熱乾燥が行われています。
熱源が飽和蒸気のみの伝導伝熱式での乾燥方式でありながら、外気をなるべく取り入れない他にはない独自の機構で乾燥機内の温度は、外気温度に影響されず常に高温で一定に保たれています。それは外気を取り入れない特徴ある独自の乾燥機構で内部の空気をブロワ、ファンで吸い込み乾燥機内部の上部に設置されている熱交換器で加熱し、その加熱された空気熱風をせん断、撹拌を繰り返しながら加熱搬送されている乾燥対象物へ吹き付け当てています。わざわざ熱風を起こしそれを乾燥対象物へ吹き付け当てているのですが、外気を取り入れそれを加熱するのではなく乾燥機内部の高温の空気をさらに加熱しながら乾燥対象物へ当て乾燥を促進しています。洗濯物が風でよく乾くという乾燥機構を取り入れ熱風対象物に熱風を当てることによる熱風乾燥です。今内容により、KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。
どこもできない付着物、粘着物及び液体状の乾燥に是非KENKI DRYER をご検討下さい。 |
国際特許技術の簡単な構造でイニシャル、ランニング、メンテナンスコストが安価です。 |
汚泥乾燥では乾燥機械代金を産廃費削減約2、3年での償却を目指しています。 |
原料スラリー乾燥では箱型棚段乾燥の置き換えで人手がいらず乾燥の労力が大幅に減ります。 |
有機廃棄物乾燥では燃料、肥料、土壌改良剤、飼料等へ再資源化リサイクル利用ができます。 |
熱分解装置 Biogreen 火気を一切使用しない国際特許技術の熱分解装置 | https://biogreen-jp.com |
会社サイト もう悩みません。コンベヤ、産業環境機械機器 | https://kenki-corporation.jp |