イオン結合とイオン結晶 / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件の特許を取得済み独自技術を持つ画期的な乾燥装置です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。
日本、台湾、米国、フランス、ドイツ、イギリス、スイス、カナダ 8ケ国 11件特許取得済。

 

■ 化学結合について

 

分子内の原子同士をつなぎ合わせる結合を分子内結合、分子と別の分子とをつなぎ合わせる結合は分子間結合と呼ばれ、これらのつなぎ合わせる結合を化学結合と言います。
分子内結合には、イオン結合、共有結合及び金属結合などがあります。
分子間結合での分子間同士で働く力を分子間力と言い、イオン間相互作用、水素結合、双極子相互作用及びファンデルワールス力などがあります。

 

■ イオン結合とは

 

電子を放出して正(プラス)の電荷を帯電した陽イオン(カチオン)と電子を取り込んで負(マイナス)の電荷を帯電した陰イオン(アニオン)との間での、クーロン力の引力による結合をイオン結合と言います。
イオン結合で多いのは、金属元素(主に陽イオン)と非金属元素(主に陰イオン)との間での結合です。

 

イオン結合(イオンけつごう、英語:ionic bond)は正電荷を持つ陽イオン(カチオン)と負電荷を持つ陰イオン(アニオン)の間の静電引力(クーロン力)による化学結合である。この結合によってイオン結晶が形成される。共有結合と対比され、結合性軌道が電気陰性度の高い方の原子に局在化した極限であると解釈することもできる。
イオン結合は金属元素(主に陽イオン)と非金属元素(主に陰イオン)との間で形成されることが多いが、塩化アンモニウムなど、非金属の多原子イオン(ここではアンモニウムイオン)が陽イオンとなる場合もある。イオン結合によってできた物質は組成式で表される。

出典:Wiki イオン結合

 

■ イオン結晶とは

 

イオン結合によってできている結晶を、イオン結晶といいます。結晶は固体の一部です。

イオン結晶の性質には、大きく下記3つがあります。

イオン結晶の性質
融点、沸点が高いイオン結合は、強い結合のため、固体から液体へあるいは液体から気体へ状態変化する際は大きなエネルギーが必要となる。従って融点、沸点が高くなる。
硬いがもろいイオン結合は強い結合のため、結晶は硬い。しかし、力を加えられ陽イオンと陰イオンの配列がずれることにより、互いに引き合っていた陽イオンと陰イオンが反発し、結晶は簡単に割れてしまう。この性質は劈開(へきかい)という。
溶けると電気を通すイオン結晶は、固体の状態だと電荷を持つ帯電した陽イオンと陰イオンが強固に結び付き電気を通さない。しかし、温度を上げ固体から液体への融解、あるいは水に溶かし溶解し水溶液の状態にすると、電荷を持つ陽イオンと陰イオンは自由に動き合わることができるようになり、電気を通すようになる。

 

イオン結晶の構造は下記3種類に分類されます。

イオン結晶の構造
塩化ナトリウム型 NaCl型塩化セシウム型 CsCl型硫化亜鉛型 ZnS型

 

塩化ナトリウム型構造 NaCl型
イオン結晶 NaCl型構造 ヒートポンプ汚泥乾燥機 KENKI DRYER 2020.10.13

 

画像出典:Wiki イオン構造

 

■ 結晶と固体の違い

 

結晶とは原子、分子が規則正しく並び配列されているものを指しますが、固体は結晶のように原子、分子が規則正しく配列されず、無秩序に配列されたものも含みます。例えばガラスです。そのため、結晶は固体の一部と言えます。

 



イオン結晶(イオン結合結晶, 英: ionic crystal
はイオン結合によって形成される結晶のこと。
この結晶は、異符号のイオン同士が隣り合いクーロン力によって結び付けられ固定されることでできる。イオン結合は強い結合なのでイオン結晶は融点が高く、硬い性質を持つ場合が多いが、脆くて壊れやすい性質も持つ。この性質を劈開という。これは、外力が加わると同符号のイオン同士が接近して、互いに反発しあうためである。

通常、固体では電気伝導性はない(超イオン伝導体は例外)が、融点を超えて液体となった場合や溶質として水などに溶かすと電気を導く。これは、液体や水溶液になることで電荷を持ったイオンが移動できるようになるためである。水溶液中では電離して水和イオンとして存在する。このように水中で電離する物質を電解質という。
陽イオンを構成する元素と陰イオンを構成する元素の電気陰性度の差が小さい場合、結合は共有性を帯びるようになり、共有結晶的な性質をもつようになる。例えばヨウ化銀および硫化亜鉛などは共有結合性が強くなり、水に対する溶解度も小さい。イオン結晶を構成する物質は組成式で表される。

出典:Wiki イオン結晶

 

結晶(けっしょう、英: crystalとは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ結晶と見なせる。

出典:Wiki 結晶

 

劈開(へきかい、英: cleavageとは、結晶や岩石の割れ方がある特定方向へ割れやすいという性質のこと。鉱物学、結晶学、岩石学用語である。宝石の加工や、工学の分野で重要な性質の1つ。

出典:Wiki へき開

 

融解(ゆうかい、英: meltingとは、物理学で固体が液体に変化すること。また、そうさせるために加熱することである。固体が液体に変化する温度を融点、液体に変化した物質の状態を液相という。

出典:Wiki 融解

 

溶解(ようかい、英: dissolutionとは溶質と呼びあらわされる固体、液体または気体が溶媒(液体)中に分散して均一系を形成する現象。その生成する液体の均一系は溶液と呼ばれる。溶解する場合の分散は単一分子であったり、分子の会合体であったりする。あるいは金属工学などでは金属の融解(英: melting)を溶解と呼ぶこともある。

出典:Wiki 溶解

 

固体(こたい、英: solidは物質の状態の一つ。固体内の原子は互いに強く結合しており、規則的な幾何学的格子状に並ぶ場合(金属や通常の氷などの結晶)と、不規則に並ぶ場合(ガラスなどのアモルファス)がある。
液体や気体と比較して、変形あるいは体積変化が非常に小さい。変形が全く起こらない剛体は理想化された固体の一つである。連続体力学においては、固体は静止状態においてもせん断応力の発生する物体と捉えられる。液体のように容器の形に合わせて流動することがなく、気体のように拡散して容器全体を占めることもない。

出典:Wiki 固体

 

 

イオン結合陽イオン(カチオン)と陰イオン(アニオン)との間での、クーロン力の引力による結合。
イオン結晶 イオン結合によってできている結晶。
金属元素金属としての性質を持つ元素。
非金属元素金属元素以外の元素
半金属元素金属と非金属の中間の性質を示す元素。
クーロン力
(静電気力)
二つの電荷を持つ物質間で働く電気的な力。単位は N (ニュートン)。
クーロンの法則二つの電荷を持つ物質間で働く電気的な力であるクーロン力は、それぞれの電荷の積に比例し、物質間の距離の2乗に反比例するという基本法則。
引力と斥力引力又は誘引力とは、2つの物体間に働く相互に引き合う、互いを近付けようとする力。斥力(せきりょく)又は反発力とは、2つの物体間に働く相互に反発し合う互いを遠ざけようとする力。
電荷イオンが持っている電気あるいはその量。
帯電物体が電気を帯びる現象。
電流負(マイナス)の電荷を持つ電子が導体中を移動する流れ、あるいはある導線の断面を単位時間に通過する電荷量(電子)の量。
電荷素量電荷の最小値。
電荷保存則電荷の総量は時間経過に係わらず永遠に変わらないという法則。
イオン化エネルギー 原子から電子を1個を取り除き1価の陽イオン(カチオン)になる際に吸収するエネルギー。
電子親和力原子が1個の電子を取り込み1価の陰イオン(アニオン)になる際に放出するエネルギー。
エネルギー 物質などが持っている仕事をすることができる能力。
イオン 原子は電気的には中性で電気を帯びていないが、電子(マイナス)を失うとプラスの電気を帯び、電子(マイナス)を受け取るとマイナスの電気を帯びる。このように原子が、電気を帯びたもの。
イオン化(電離) イオンになる現象及び操作。
イオン化傾向 水中での金属のイオンへのなりやすさ。
周期表 元素を原子番号の順に並べた表。
化学結合分子内結合及び分子間結合など、つなぎあわせる結合。
分子内結合分子内の原子同士をつなぎ合わせる結合。
分子非金属のいくつかの原子が結合し安定した形になった物質。
原子物質とは粒子の集合体で、原子はその物質を構成する粒子。
元素原子の種類。
分子間結合分子と別の分子とをつなぎ合わせる結合。
分子間力分子間結合での分子間同士で働く力。

 

原子と元素と分子について / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

イオンと周期表 / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

イオン化エネルギーと電子親和力 / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

電荷について / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

クーロン力とクーロンの法則 / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

金属元素と非金属元素及び半金属元素 / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

 

 


■ 熱源 飽和蒸気


KENKI DRYER
の乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風併用で他にはない画期的な乾燥方式を取り入れ安全衛生面で優れ、安定した蒸気を熱源とするため乾燥後の乾燥物の品質は均一で安定しています。蒸気圧力は最大0.7Mpaまで使用可能で、乾燥条件により蒸気圧力の変更つまり乾燥温度の調整は簡単に行なえます。飽和蒸気は一般の工場では通常利用されており取り扱いに慣れた手軽な熱源だと言えます。バーナー、高温の熱風を利用する乾燥と比較すると、飽和蒸気はパイプ内を通し熱交換で間接乾燥させる熱源であることから、低温で燃える事はなく安全衛生面、ランニングコスト面で優れています。

飽和蒸気には特有の特徴があります。蒸気圧力の変更に伴い蒸気温度が変わるため、乾燥温度の調整が簡単に行なます。又、凝縮熱、潜熱を利用できるため温水、油等の顕熱利用と比較すると熱量が2~5倍で乾燥に最適な熱源と言えます。
飽和蒸気は乾燥後ドレンとなりますがそれは回収ができ蒸気発生装置ボイラーへの供給温水として利用すれば燃料費等のランニングコストは安価で済みます。

 

 

熱源 蒸気

KENKI DRYER 熱源蒸気とヒートポンプについて / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

 

 


昨今、KENKI DRYER に求められる内容に二酸化炭素CO2 の削減があります。ヒートポンプ自己熱再生乾燥機 KENKI DRYER であれば、二酸化炭素CO2 が大量に削減ができる上、燃料費も大幅な削減が可能になるでしょう。
どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件の特許を取得済み独自技術を持つ画期的な製品です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。

 

■ ヒートポンプの工程

 

ヒートポンプの工程 ヒートポンプ汚泥乾燥機 スラリー乾燥機 kenki dryer 2020.7.9

 


■ ヒートポンプ自己熱再生乾燥機 KENKI DRYER について

 

蒸気(飽和蒸気)でのヒートポンプ自己熱再生乾燥機 KENKI DRYER とは、乾燥熱源である蒸気を利用した自己熱再生乾燥システムです。
蒸気ヒートポンプの工程は、KENKI DRYER で加熱乾燥に利用した蒸気を膨張弁での断熱膨張により圧力は低下し、蒸気内の水分は蒸発、気化し周辺の熱を吸収し蒸気温度は下降します。その蒸気を次の工程の熱交換器で熱移動することによりさらに蒸発、気化させ蒸気圧力を低下させます。十分に蒸発、気化が行われ圧力が下げられた蒸気は次の圧縮工程へ進みます。
圧縮工程の圧縮機で蒸気を断熱圧縮を行うことで、圧力は上昇しそれに伴い凝縮、液化し温度は上昇します。その蒸気の水分を除去した上で KENKI DRYER へ投入します。KENKI DRYER はその投入された蒸気を熱源として利用、加熱乾燥という熱移動を行うことで、蒸気はさらに十分に凝縮、液化され膨張弁へ進みます。この工程を繰り返します。

 

ランニングコスト削減 二酸化炭素排出量削減 ヒートポンプ乾燥機 汚泥乾燥機 2020.6.15

 

ヒートポンプ乾燥機

 

■ 乾燥機構
KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。

 

乾燥装置 KENKI DRYER の特徴ある独自の乾燥の機構も国際特許技術です。粉砕乾燥、撹拌乾燥、循環乾燥そして間接乾燥 と言った4つの乾燥機構が同時に乾燥対象物に対し加熱乾燥動作を絶え間なく繰り返し行われることにより乾燥対象物の内部まで十分に乾燥され乾燥後の製品の品質が一定です。乾燥対象物投入時から乾燥後排出まで乾燥対象物の乾燥が不十分になりやすい塊化を防ぎ、乾燥対象物の内部まで熱が十二分に行き渡るよう様々な工夫がなされており常に安定した加熱乾燥が行われています。
熱源が飽和蒸気のみの伝導伝熱式での乾燥方式でありながら、外気をなるべく取り入れない他にはない独自の機構で乾燥機内の温度は、外気温度に影響されず常に高温で一定に保たれています。それは外気を取り入れない特徴ある独自の乾燥機構で内部の空気をブロワ、ファンで吸い込み乾燥機内部の上部に設置されている熱交換器で加熱し、その加熱された空気熱風をせん断、撹拌を繰り返しながら加熱搬送されている乾燥対象物へ吹き付け当てています。わざわざ熱風を起こしそれを乾燥対象物へ吹き付け当てているのですが、外気を取り入れそれを加熱するのではなく乾燥機内部の高温の空気をさらに加熱しながら乾燥対象物へ当て乾燥を促進しています。洗濯物が風でよく乾くという乾燥機構を取り入れ熱風対象物に熱風を当てることによる熱風乾燥です。今内容により、KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。

 

乾燥機構

国際特許

 

どこもできない付着物、粘着物及び液体状の乾燥に是非KENKI DRYER をご検討下さい。
国際特許技術の簡単な構造でイニシャル、ランニング、メンテナンスコストが安価です。
汚泥乾燥では乾燥機械代金を産廃費削減約2、3年での償却を目指しています。
原料スラリー乾燥では箱型棚段乾燥の置き換えで人手がいらず乾燥の労力が大幅に減ります。
有機廃棄物乾燥では燃料、肥料、土壌改良剤、飼料等へ再資源化リサイクル利用ができます。

 

熱分解装置 Biogreen
火気を一切使用しない国際特許技術の熱分解装置
https://biogreen-jp.com
会社サイト
もう悩みません。コンベヤ、産業環境機械機器
https://kenki-corporation.jp