放電ー火花放電、グロー放電、アーク放電 / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件の特許を取得済み独自技術を持つ画期的な乾燥装置です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。
日本、台湾、米国、フランス、ドイツ、イギリス、スイス、カナダ 8ケ国 11件特許取得済。

前回「放電ー暗流、コロナ放電」の続きです。

 

■ 火花放電

 

火花放電とは、2電極間へ与える電圧がある限界を超えると、瞬間的に大きな電流が流れ、火花と音を伴った放電が生じる現象です。火花放電は不連続、瞬間的な放電で通常は短時間に消滅します。火花放電はフラッシュオーバとも呼ばれています。
この火花放電の火花が飛び散る寸前がコロナ放電で、この火花放電が連続するとグロー放電、アーク放電へ進展します。
電極間に高電圧を加えると、電極間の電子が気体中の分子に衝突し陽イオンに電離します。(α作用)。この陽イオンが陰極に衝突すると、その陰極から電子が放出されます(二次電子放出)。このこの放出された電子が電極間の空間に供給されます。(γ作用)。これらα作用γ作用により電子が大量に生成され電極間に大電流が流れます。気体中に流れる大電流により気体が高温に加熱され光が発生します。
自然現象の雷は、帯電した積乱雲と積乱雲間あるいは大地間で発生する大規模な火花放電です。

 

火花放電(フラッシオーバ、絶縁破壊あるいは全路破壊)は、電圧がある限界をこえると、電極間に火花が観察される現象で、不連続な過渡的現象の場合を指す。
電極間に印加する電圧を上げると、電極間に存在する気体分子が高電圧によって加速された電子と衝突して電離し(α作用と呼ぶ)、また、電離によって生成された正イオンが負極に衝突する際に起こる二次電子放出により負極より電子が電極間の空間に供給される(γ作用と呼ぶ)ようになる。これらの二つの作用により生成される荷電粒子の量が、両電極あるいは周囲の空間へと失われる量よりも多いと、電極間に流れる荷電粒子の量はなだれ的に増加し、電極間には大電流が流れるようになることで起こる。
火花放電が継続的に流れるとグロー放電あるいはアーク放電となる。放電路の発光は放電ギャップ全長で認められる。雷は帯電した積乱雲内あるいは大地間に発生する大規模な火花放電である。通常、気体あるいは沿面放電の場合をフラッシオーバ、液体、固体、真空の場合を絶縁破壊の語を用いる。

出典:Wiki 放電

 

■ グロー放電

 

火花放電は、短時間、瞬間的な放電ですが、グロー放電は低圧気体中(大気圧の100分の1程度)の持続的な放電の現象です。
グロー放電は、低圧気体内で電極間に高電圧を加えると、火花放電と同様、二次電子放出、α作用とγ作用により電子が大量に生成され電極間に大電流が持続的に流れます。
このグロー放電での電流が増加するとアーク放電となります。
このグロー放電の応用例としてネオンサインや蛍光灯の他、薄膜形成に使われるスパッタ装置等があります。

 

グロー放電(英語:Electric glow discharge)は低圧の気体中の持続的な放電現象である。電極間空間への荷電粒子供給が、正イオンの負極への衝突の際に起こる二次電子放出(γ作用)と負極・正極間を移動する電子による気体分子の電離(α作用)によるものである。電流が増加するとアーク放電に遷移する。放電管に封入されたガスの種類によって、いろいろな色に発光する。放電の構造は気体の種類、圧力、放電管の形状などにより変化する。

出典:Wiki 放電

 

■ アーク放電

 

グロー放電の状態からさら与える電圧を高く、又は抵抗を小さくし電流を増加させるとアーク放電となります。アーク放電は激しい光と熱を発します。アーク放電は電弧電弧放電とも言います。
グロー放電は高電圧、小電流で、電極間の気体の分子は低温ですが、一方、アーク放電は電極間の気体の分子の温度は非常に高温です。(約5000℃~20000℃)。
アーク放電は、負極からの電子放出により、負極が加熱され、熱電子放出による熱陰極アークと、負極表面に存在する非常に強い電界により直接電子が放出される電界アークがあります。
アーク放電は照明ランプやアーク溶接等に利用されており、蛍光灯では、低気圧水銀蒸気中内の熱陰極アークが利用されています。
アーク放電は2次電子放出によらない放電の現象で、放電の最終形態です。

 

アーク放電 ヒートポンプ汚泥乾燥機 KENKI DRYER 2020.11.10

画像出典:Wiki 電弧

 

アーク放電は電極からの電子の放出が前述のγ作用以外のものが主となる放電の形態で、放電の最終形態となっている。 照明ランプや、アーク溶接に利用され、たとえば、蛍光灯においては、低気圧水銀蒸気中における熱陰極アークが利用されている。
アーク放電は負極からの電子放出の形態により、負極の加熱により起こる熱電子放出による熱陰極アークと、負極表面に存在する非常に強い電界により直接電子が放出され(電界放出あるいは冷電子放出と呼ぶ)る冷陰極アーク(電界アークとも呼ばれる)に分れ、負極が炭素・タングステンなどの高沸点材の場合は熱陰極アーク、鉄・銅・水銀などの低沸点材の場合は冷陰極アークになるとされるが、不明な点も多い。
また、放電路における気体分子の電離も電極間の気体圧力により異なり、低圧の場合はグロー放電同様α作用によるが、標準気圧~高圧では熱電離が主となる。 標準気圧の空気中ならば電極間に熱電離したイオンの量が十分に存在する為、イオンが電路の役割を果たし、非常に低電圧大電流で放電を保つことが可能になる。このときの温度は10000Kを超える。

出典:Wiki 放電

 

電弧(でんこ)、電弧放電(でんこほうでん)、または、アーク放電(英: electric arは、電極に電位差が生じることにより、電極間にある気体に持続的に発生する絶縁破壊(放電)の一種。負極・正極間の気体分子が電離しイオン化が起こり、プラズマを生み出しその中を電流が流れる。結果的に、普段は伝導性のない気体中を電流が流れることになる。この途中の空間では気体が励起状態になり高温と閃光を伴う。

出典:Wiki 電弧

 

 


■ 放電とは

 

放電とは、気体等の絶縁体がイオン化、電離され、絶縁破壊され電流が流れること、あるいは帯電している電池、コンデンサ等の物体が蓄積された電荷、電気を失うことを指します。蓄積された電荷を失うことの対義語は充電です。又、液体、固体でも強い電場により放電は起こります。
気体中に正、負の電極を置き電圧を加えた際、電圧が小さい場合は発光はない暗流が流れます。ところが電圧を上げ、電場を強くすることにより電子は加速度的にイオン化、電離がなされ、電子が移動し電流が増加します。その電流の増加と共に、暗流からコロナ放電火花放電グロー放電そしてアーク放電へと進展します。但し、平等電界の場合は、コロナ放電を経由しないで暗流から火花放電へ進展すると言われますが、実際は平等電界は存在せず、コロナ放電を経由しないで火花放電を発生する電極配置は、準平等電界あるいは平等電界型電極と呼ばれます。

 

放電(ほうでん)は電極間にかかる電位差によって、間に存在する気体に絶縁破壊が生じ電子が放出され、電流が流れる現象である。形態により、雷のような火花放電コロナ放電グロー放電アーク放電に分類される。もしくは、コンデンサや電池において、蓄積された電荷を失う現象である。この現象の対義語は充電。
典型的な放電は電極間の気体で発生するもので、低圧の気体中ではより低い電位差で発生する。電流を伝えるものは、電極から供給される電子、宇宙線などにより電離された空気中のイオン、電界中で加速された電子が気体分子に衝突して新たに電離されてできた気体イオンである。

出典:Wiki 放電

 

放電ー暗流、コロナ放電 / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

 

■ イオンとイオン化について

 

原子は、原子核の周りに電子が回転している構造ですが、その種類によって原子内の電子を失いやすいものや、逆に電子を受け取りやすいものがあります。通常、原子は電気的には中性で電気を帯びていませんが、電子(マイナス)を失うとプラスに帯電し、電子(マイナス)を受け取るとマイナスに帯電します。このように原子が、電気を帯びたものをイオンと言い、そのイオンになる現象及び操作をイオン化あるいは電離と言います。
又、正(プラス)の電気を帯びたものを陽イオン、負(マイナス)の電気を帯びたものを陰イオンと言い、この原子をイオン化するには様々な方法があります。

 

イオン(独: Ion、英: ionとは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。
陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion(”going”)より、 ion(移動)の名が付けられた。

出典:Wiki イオン

 

イオン化(イオンか、英語: ionizationとは、電荷的に中性な原子、分子、ないし塩を、正または負の電荷を持ったイオンとする操作または現象で、電離(でんり)とも呼ばれる。
主に物理学の分野では荷電ともいい、分子(原子あるいは原子団)が、エネルギー(電磁波や熱)を受けて電子を放出したり、逆に外から得ることを指す。(プラズマまたは電離層を参照) また、化学の分野では解離ともいい、電解質が溶液中や融解時に、陽イオンと陰イオンに分かれることを指す。

出典:Wiki イオン化

イオンと周期表 / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

 

 


■ セルフクリーニング Steam Heated Twin Screw technology
SHTS technology)

 

乾燥装置 KENKI DRYER の国際特許技術の一つが Steam Heated Twin Screw technology (SHTS technology)でセルフクリーニング機構です。この機構によりどこもできないどんなに付着、粘着、固着する乾燥対象https://kenkidryer.jp/products/patents/物でも独自の構造で機械内部に詰まることなく乾燥できます。
例えば乾燥対象物が羽根に付着したとしても、その付着物を乾燥機内の左右の羽根が強制的に剥がしながら回転します。どんなに付着、粘着、固着性がある乾燥物でも左右の羽根が剥がしながら回転するため羽根に付着することなく、そして停止することなく羽根は常に回転し続け、剥がし、撹拌、加熱乾燥を繰り返しながら搬送されます。又、常に羽根の表面は更新され綺麗なため羽根よりの熱は遮るものなく乾燥物にいつも直接伝えることができます。どこも乾燥ができない付着、粘着性が強い物あるいは原料スラリー等の液体状に近い状態で投入したとしてもこのテクノロジーで全く問題なく確実に乾燥ができます。このSHTSテクノロジーは約7年以上を経て完成させており国内はもとより海外でも特許を取得、出願しております。

日本、米国、台湾、フランス、ドイツ、イギリス、スイス、カナダ特許取得済。

セルフクリ-ニング

 

■ 乾燥機構
KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。

 

乾燥装置 KENKI DRYER の特徴ある独自の乾燥の機構も国際特許技術です。粉砕乾燥、撹拌乾燥、循環乾燥そして間接乾燥 と言った4つの乾燥機構が同時に乾燥対象物に対し加熱乾燥動作を絶え間なく繰り返し行われることにより乾燥対象物の内部まで十分に乾燥され乾燥後の製品の品質が一定です。乾燥対象物投入時から乾燥後排出まで乾燥対象物の乾燥が不十分になりやすい塊化を防ぎ、乾燥対象物の内部まで熱が十二分に行き渡るよう様々な工夫がなされており常に安定した加熱乾燥が行われています。
熱源が飽和蒸気のみの伝導伝熱式での乾燥方式でありながら、外気をなるべく取り入れない他にはない独自の機構で乾燥機内の温度は、外気温度に影響されず常に高温で一定に保たれています。それは外気を取り入れない特徴ある独自の乾燥機構で内部の空気をブロワ、ファンで吸い込み乾燥機内部の上部に設置されている熱交換器で加熱し、その加熱された空気熱風をせん断、撹拌を繰り返しながら加熱搬送されている乾燥対象物へ吹き付け当てています。わざわざ熱風を起こしそれを乾燥対象物へ吹き付け当てているのですが、外気を取り入れそれを加熱するのではなく乾燥機内部の高温の空気をさらに加熱しながら乾燥対象物へ当て乾燥を促進しています。洗濯物が風でよく乾くという乾燥機構を取り入れ熱風対象物に熱風を当てることによる熱風乾燥です。今内容により、KENKI DRYERは乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風対流伝熱併用での他にはない画期的な乾燥方式での乾燥機と言えます。

日本、米国、台湾、フランス、ドイツ、イギリス、スイス、カナダ特許取得済。

乾燥機構

 

■ 熱源 飽和蒸気


KENKI DRYER
の乾燥の熱源は飽和蒸気のみながら伝導伝熱と熱風併用で他にはない画期的な乾燥方式を取り入れ安全衛生面で優れ、安定した蒸気を熱源とするため乾燥後の乾燥物の品質は均一で安定しています。蒸気圧力は最大0.7MpaGまで使用可能で、乾燥条件により蒸気圧力の変更つまり乾燥温度の調整は簡単に行なえます。飽和蒸気は一般の工場では通常利用されており取り扱いに慣れた手軽な熱源だと言えます。バーナー、高温の熱風を利用する乾燥と比較すると、飽和蒸気はパイプ内を通し熱交換で間接乾燥させる熱源であることから、低温で燃える事はなく安全衛生面、ランニングコスト面で優れています。

飽和蒸気には特有の特徴があります。蒸気圧力の変更に伴い蒸気温度が変わるため、乾燥温度の調整が簡単に行なます。又、凝縮熱、潜熱を利用できるため温水、油等の顕熱利用と比較すると熱量が2~5倍で乾燥に最適な熱源と言えます。
飽和蒸気は乾燥後ドレンとなりますがそれは回収ができ蒸気発生装置ボイラーへの供給温水として利用すれば燃料費等のランニングコストは安価で済みます。

 

 

熱源 蒸気

KENKI DRYER 熱源蒸気とヒートポンプについて / 汚泥乾燥機, スラリー乾燥機, ヒートポンプ汚泥乾燥機

 

 


昨今、KENKI DRYER に求められる内容に二酸化炭素CO2 の削減があります。ヒートポンプ自己熱再生乾燥機 KENKI DRYER であれば、二酸化炭素CO2 が大量に削減ができる上、燃料費も大幅な削減が可能になるでしょう。
どこもできない付着物、粘着物が乾燥できる KENKI DRYER は、日本 2件、海外7ケ国 9件の特許を取得済み独自技術を持つ画期的な製品です。高含水率有機廃棄物乾燥機、汚泥乾燥機、スラリー乾燥機、メタン発酵消化液乾燥機及び廃棄物リサイクル乾燥機に是非 KENKI DRYER をご検討下さい。

 

■ ヒートポンプの工程

 

ヒートポンプの工程 ヒートポンプ汚泥乾燥機 スラリー乾燥機 kenki dryer 2020.7.9

 


■ ヒートポンプ自己熱再生乾燥機 KENKI DRYER について

 

蒸気(飽和蒸気)でのヒートポンプ自己熱再生乾燥機 KENKI DRYER とは、乾燥熱源である蒸気を利用した自己熱再生乾燥システムです。
蒸気ヒートポンプの工程は、KENKI DRYER で加熱乾燥に利用した蒸気を膨張弁での断熱膨張により圧力は低下し、蒸気内の水分は蒸発、気化し周辺の熱を吸収し蒸気温度は下降します。その蒸気を次の工程の熱交換器で熱移動することによりさらに蒸発、気化させ蒸気圧力を低下させます。十分に蒸発、気化が行われ圧力が下げられた蒸気は次の圧縮工程へ進みます。
圧縮工程の圧縮機で蒸気を断熱圧縮を行うことで、圧力は上昇しそれに伴い凝縮、液化し温度は上昇します。その蒸気の水分を除去した上で KENKI DRYER へ投入します。KENKI DRYER はその投入された蒸気を熱源として利用、加熱乾燥という熱移動を行うことで、蒸気はさらに十分に凝縮、液化され膨張弁へ進みます。この工程を繰り返します。

 

ランニングコスト削減 二酸化炭素排出量削減 ヒートポンプ乾燥機 汚泥乾燥機 2020.6.15

 

ヒートポンプ乾燥機

 

どこもできない付着物、粘着物及び液体状の乾燥に是非KENKI DRYER をご検討下さい。
国際特許技術の簡単な構造でイニシャル、ランニング、メンテナンスコストが安価です。
汚泥乾燥では乾燥機械代金を産廃費削減約2、3年での償却を目指しています。
原料スラリー乾燥では箱型棚段乾燥の置き換えで人手がいらず乾燥の労力が大幅に減ります。
有機廃棄物乾燥では燃料、肥料、土壌改良剤、飼料等へ再資源化リサイクル利用ができます。

 

熱分解装置 Biogreen
火気を一切使用しない国際特許技術の熱分解装置
https://biogreen-jp.com
会社サイト
もう悩みません。コンベヤ、産業環境機械機器
https://kenki-corporation.jp